CAO Hailiang, LIU Hongbei, ZHANG Ziyang, ZHAO Xiaoliang, GUO Sai
Abstract:
In order to further enhance boiling heat transfer,multiple low thermal conductive material plates were embedded near the upper wall of the solid heater,alternating temperature variations with space on the heating surface for boiling heat transfer were obtained in this study. The single-component multiphase lattice Boltzmann method was used to investigate the effects of the number and gap spacing of low thermal conductive material plates on boiling heat transfer performance and bubble dynamics, the mechanism of enhancing boiling heat transfer by adding low thermal conductive material plates was revealed from a microscopic perspective. The results indicated that the dynamic behavior of bubbles changed with the increase of gap spacing, leading to bubble merging, independent growth, and other bubble detachment processes. Based on the analysis of bubble dynamic behavior, temperature field, and flow field, it was found that bubbles first nucleated and grew at the gap heated surface,the vortex separated from bubbles could promote the lateral migration and merging process of growing bubbles on the heated surface. Morever, within a certain gap spacing range, bubbles would fuse with each other to form a liquid bridge,which could promote the evaporation of the micro layer around the root of the bubbles on the heated surface, and pushed the cold fluid to wet the gap heated surface again. The combined effects of adding multiple low thermal conductive material plates, heat accumulation at gaps, bubble merging to forma liquid bridge, re-wetting of gap heated surfaces, lateral migration of bubbles, and rapid merging of multiple bubbles could enhance boiling heat transfer performance.