WANG Dingbiao, WANG Shuai, ZHANG Haoran, WU Qitao, YANG Chongrui, WANG Guanghui
Abstract:
Fluid topology optimization is a breakthrough technology, which has broad application prospects in aerospace, automotive, electronic chips and other fields, however, the design of complex structure is difficult to process through the traditional manufacturing technology. With the development of additive manufacturing (3D printing) technology, it could provide an effective way to further expand the application and research of fluid topology optimization, which would of great significance for realizing the structural lightweight, dynamic optimization, safety optimization and performance improvement of related industrial equipment, and implementing the national strategy of “energy conservation and consumption reduction, carbon peak and carbon neutralization”. With the help of the literature metrology tool VOSviewer, were classified and summarized the literature related to fluid topology optimization in the Web of Science database were classified, comprehensively and the theoretical system, solution methods, optimization methods, and engineering applications of fluid topology optimization were expounded systematically, and the related problems were discussed. First of all, compared with solid topology optimization, fluid topology optimization involved more fields, more diverse flow regime characteristics, and more complex mathematical models, so it was more difficult to solve, took longer to calculate, and required more computing resources, which was the main factor restricting the engineering application of fluid topology optimization. Secondly, the three links and key technologies of fluid topology optimization were systematically described: representation method of design variable, CFD model and solution method, topology optimization model and solution method, and the characteristics and application scenarios of existing technologies were analyzed. At the same time, several application scenarios of fluid topology optimization, such as electronic chip heat sink, aircraft, automobile and heat exchanger, were briefly described. Finally, the development trend of fluid topology optimization was predicted and summarized. It was suggested that the multidisciplinary topology optimization research on turbulence, conjugate heat transfer, fluid-solid-heat coupling, fluid-solid-heat-mass coupling should be further strengthened; the research of topology optimization based on multi-objective function should be expanded; the deep combination with artificial intelligence should be further strengthened, more robust and mature intelligent CFD solver and intelligent optimization solver, and even intelligent software of fluid topology optimization should be developed.