STATISTICS

Viewed302

Downloads258

Brain Glioma Image Segmentation Based on Convolution and Deformable Attention
[1]GAO Yufei,MA Zixing,XU Jing,et al.Brain Glioma Image Segmentation Based on Convolution and Deformable Attention[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):27-32.[doi:10.13705/j.issn.1671-6833.2023.05.007]
Copy
References:
[1] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2015: 234-241.
[2] XIAO X, LIAN S, LUO Z M, et al. Weighted Res-UNet for high-quality retina vessel segmentation[C]∥2018 9th International Conference on Information Technology in Medicine and Education (ITME). Piscataway: IEEE, 2018: 327-331.
[3] MILLETARI F, NAVAB N, AHMADI S A. V-Net: fully convolutional neural networks for volumetric medical image segmentation[C]∥2016 Fourth International Conference on 3D Vision (3DV). Piscataway: IEEE, 2016: 565-571.
[4] FENG S L, ZHAO H M, SHI F, et al. CPFNet: context pyramid fusion network for medical image segmentation[J]. IEEE Transactions on Medical Imaging, 2020, 39(10): 3008-3018.
[5] XIA H Y, MA M J, LI H S, et al. MC-Net: multi-scale context-attention network for medical CT image segmentation[J].Applied Intelligence, 2022, 52(2): 1508-1519.
[6] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
[7] CHEN J N, LU Y Y, YU Q H, et al. AA-TransUNet: transformers make strong encoders for medical image segmentation[EB/OL].(2021-02-08)[2023-01-12]. https:∥doi.org/10.48550/arXiv.2102.04306.
[8] YANG Y, MEHRKANOON S. AA-TransUNet: attention augmented transunet for nowcasting tasks[C]∥2022 International Joint Conference on Neural Networks (IJCNN). Piscataway:IEEE, 2022: 1-8.
[9] WANG W X, CHEN C, DING M, et al. TransBTS: multimodal brain tumor segmentation using transformer[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 109-119.
[10] WANG W H, XIE E Z, LI X, et al. Pyramid vision transformer: a versatile backbone for dense prediction without convolutions[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE, 2022: 548-558.
[11] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision transformer using shifted windows[C]∥2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway:IEEE, 2022: 9992-10002.
[12] CAO H, WANG Y, CHEN J, et al. Swin-UNet: Unet-like pure transformer for medical image segmentation[EB/OL]. (2021-05-12)[2023-01-12].https:∥doi.org/10.48550/arXiv.2105.05537.
[13] GAO Y, ZHOU M, METAXAS D N. UTNet: a hybrid transformer architecture for medical image segmentation[C]∥International Conference on Medical Image Computing and Computer-Assisted Intervention. Cham: Springer, 2021: 61-71.
[14] XIA Z F, PAN X R, SONG S J, et al. Vision Transformer with deformable attention[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2022: 4784-4793.
[15] DAI Z H, LIU H X, LE Q V, et al. CoAtNet: Marrying convolution and attention for all data sizes[J]. Advances in Neural Information Processing Systems, 2021, 34: 3965-3977.
[16] GUO J Y, HAN K, WU H, et al. CMT: convolutional neural networks meet vision transformers[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2022: 12165-12175.
[17] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018: 4510-4520.
[18] ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-net: learning dense volumetric segmentation from sparse annotation[M]∥Medical Image Computing and Computer-Assisted Intervention-MICCAI 2016. Cham: Springer, 2016: 424-432.
[19] YU W, FANG B, LIU Y Q, et al. Liver vessels segmentation based on 3D residual U-NET[C]∥2019 IEEE International Conference on Image Processing (ICIP).Piscataway: IEEE, 2019: 250-254.
[20] LIU C Y, DING W B, LI L, et al. Brain tumor segmentation network using attention-based fusion and spatial relationship constraint[C]∥International MICCAI Brainlesion Workshop. Cham:Springer, 2021: 219-229.
[21] VU M H, NYHOLM T, LÖFSTEDT T. Multi-decoder networks with multi-denoising inputs for tumor segmentation[C]∥International MICCAI Brainlesion Workshop. Cham: Springer, 2021: 412-423.
Similar References:
Memo

-

Last Update: 2024-03-08
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)