STATISTICS

Viewed1189

Downloads717

Kernel Adaptive Filtering Prediction Algorithm of Chaotic Time Series
[1]LIU Qiang,WANG Shiyuan,HUANG Xuewei,et al.Kernel Adaptive Filtering Prediction Algorithm of Chaotic Time Series[J].Journal of Zhengzhou University (Engineering Science),2023,44(01):24-30.[doi:10.13705/j.issn.1671-6833.2023.01.001]
Copy
References:
[1] 牛莹, 张勋才. 基于 Duffing 映射与遗传操作的图像加 密方法[ J] . 郑州大学学报( 工学版) , 2019, 40( 4) : 61-67.
 NIU Y, ZHANG X C. Image encryption algorithm based on Duffing map and genetic operators [ J ] . Journal of Zhengzhou university ( engineering science) , 2019, 40 (4) : 61-67.
[2] 吴腾, 张志利, 赵军阳, 等. 一种局部最佳阈值预测 的自适应角点检测方法[ J] . 计算机工程, 2018, 44 (3) : 270-274.
 WU T, ZHANG Z L, ZHAO J Y, et al. An adaptive corner detection method of local optimal threshold prediction [ J] . Computer engineering, 2018, 44(3) : 270-274. 
[3] 任天赐, 黄向生, 丁伟利, 等. 全局双边网络的语义 分割算法[ J] . 计算机科学, 2020, 47(增刊 1) : 161- 165. 
REN T C, HUANG X S, DING W L, et al. Global bilateral segmentation network for segmantic segmentation[ J]. Computer science, 2020, 47(S1): 161-165. 
[4] 王伟然, 闫景昊, 杨冠军, 等. 基于船舶磁悬浮减振 装置的 自 适 应 预 测 控 制 [ J] . 水 下 无 人 系 统 学 报, 2021, 29(4) : 383-390. 
WANG W R, YAN J H, YANG G J, et al. Adaptive predictive control based on ship magnetic suspension vibration reduction device[ J] . Journal of unmanned undersea systems, 2021, 29(4) : 383-390. 
[5] LIU W F, PRNCIPE J C, HAYKIN S. Kernel adaptive filtering [ M ] . Hoboken, USA: John Wiley & Sons, Inc. , 2010. 
[6] SHIN H C, SAYED A H. Mean-square performance of a family of affine projection algorithms [ J] . IEEE transactions on signal processing, 2004, 52(1) : 90-102. 
[7] BHOTTO M Z A, ANTONIOU A. New improved recursive least-squares adaptive-filtering algorithms[ J] . IEEE transactions on circuits and systems I: regular papers, 2013, 60(6) : 1548-1558.
[8] PEI S C, TSENG C C. Least mean p-power error criterion for adaptive FIR filter[ J] . IEEE journal on selected areas in communications, 1994, 12(9) : 1540-1547. 
[9] KURIAN N C, PATEL K, GEORGE N V. Robust active noise control: an information theoretic learning approach [ J] . Applied acoustics, 2017, 117: 180-184. 
[10] SYED M N, PARDALOS P M, PRINCIPE J C. On the optimization properties of the correntropic loss function in data analysis [ J ] . Optimization letters, 2014, 8 ( 3 ) : 823-839. 
[11] ZHANG T, WANG S Y. Nyström kernel algorithm under generalized maximum correntropy criterion[ J] . IEEE signal processing letters, 2020, 27: 1535-1539.
[12] CHEN B D, XING L, ZHAO H Q, et al. Generalized correntropy for robust adaptive filtering[ J] . IEEE transactions on signal processing, 2016, 64 ( 13 ) : 3376-3387. 
[13] CHEN B D, XING L, XU B, et al. Kernel risk-sensitive loss: definition, properties and application to robust adaptive filtering[ J] . IEEE transactions on signal processing, 2017, 65(11) : 2888-2901. 
[14] WANG S Y, WANG W Y, XIONG K, et al. Logarithmic hyperbolic cosine adaptive filter and its perfor-mance analysis[ J] . IEEE transactions on systems, man, and cybernetics: systems, 2021, 51(4) : 2512-2524. 
[15] 陈炳煌, 缪希仁, 江灏, 等. 融合粒子群与极限学习机的输电杆塔灾害分类方法[ J] . 郑州大学学报( 工 学版) , 2021, 42(4) : 77-83. 
CHEN B H, MIAO X R, JIANG H, et al. A method for disaster status classification of transmission line towers by integrating particle swarm optimization and extreme learning machine[ J] . Journal of Zhengzhou university ( engineering science) , 2021, 42(4) : 77-83. 
[16] LIU W F, POKHAREL P P, PRINCIPE J C. The kernel least-mean-square algorithm [ J ] . IEEE transactions on signal processing, 2008, 56(2) : 543-554. 
[17] ZHANG Q Q, WANG S Y. Quantised kernel least mean square algorithm with a learning vector strategy[ J] . Electronics letters, 2020, 56(21) : 1146-1147.
[18] ZHANG T, WANG S Y, HUANG X W, et al. Kernel recursive least squares algorithm based on the Nyström method with k-means sampling[ J] . IEEE signal processing letters, 2020, 27: 361-365. 
[19] 胡燕, 朱晓瑛, 马刚. 基于 K-Means 和时间匹配的位 置预测模型[ J] . 郑州大学学报( 工学版) , 2017, 38 (2) : 17-20. 
HU Y, ZHU X Y, MA G. Location prediction model based on K-means algorithm and time matching[ J] . Journal of Zhengzhou university ( engineering science ) , 2017, 38(2) : 17-20.
[20] WANG S Y, DANG L J, QIAN G B, et al. Kernel recursive maximum correntropy with Nyström approximation [ J] . Neurocomputing, 2019, 329: 424-432.
[21] WU Z Z, SHI J H, ZHANG X, et al. Kernel recursive maximum correntropy[ J] . Signal processing, 2015, 117: 11-16.
Similar References:
Memo

-

Last Update: 2022-12-06
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)