STATISTICS

Viewed2322

Downloads910

Sixth-order Longe-Kuta algorithm for the Lang-Kobayashi equation in a two-cavity optical feedback interferometric laser system
[1]Yu Fangxing,Ji Bo,Cheng Quanrun,et al.Sixth-order Longe-Kuta algorithm for the Lang-Kobayashi equation in a two-cavity optical feedback interferometric laser system[J].Journal of Zhengzhou University (Engineering Science),2021,42(05):37-43.[doi:10.13705/j.issn.1671-6833.2021.05.021]
Copy
References:
[1] HAPPACH M,DE FELIPE D,FRIEDHOFF V N,et al.Influence of integrated optical feedback on tunable lasers[J].IEEE journal of quantum electronics,2019,56(1):1-7.
[2] FISCHER,HESS,ELSA,et al.High-dimensional chaotic dynamics of an external cavity semiconductor laser[J].Physical review letters,1994,73(16):2188-2191.
[3] YU Y G,GIULIANI G,DONATI S.Measurement of the linewidth enhancement factor of semiconductor lasers based on the optical feedback self-mixing effect[J].IEEE photonics technology letters,2004,16(4):990-992.
[4] FAN Y L,YU Y G,XI J T,et al.Improving the measurement performance for a self-mixing interferometry-based displacement sensing system[J].Applied optics,2011,50(26):5064-5072.
[5] JIANG C L,GENG Y H,LIU Y W,et al.Rotation velocity measurement based on self-mixing interference with a dual-external-cavity single-laser diode[J].Applied optics,2019,58(3):604-608.
[6] GENG Y H,JIANG C L,KAN L L.Enhanced laser self-mixing Doppler velocity measurement with pre-feedback mirror[J].Applied optics,2019,58(27):7571-7576.
[7] ZHANG S H,HU Y, CAO J,et al.Effect of dual-channel optical feedback on self-mixing interferometry system[J].Journal of optics,2019,21(2):025502.
[8] CHEN J B,ZHU H B,XIA W,et al.Self-mixing birefringent dual-frequency laser Doppler velocimeter[J].Optics express,2017,25(2):560-572.
[9] MEZZAPESA F P,COLUMBO L L,De RISI G,et al.Nanoscale displacement sensing based on nonlinear frequency mixing in quantum cascade lasers[J].IEEE journal of selected topics in quantum electronics,2015,21(6):107-114.
[10] LANG R,KOBAYASHI K.External optical feedback effects on semiconductor injection laser properties[J].IEEE journal of quantum electronics,1980,16(3):347-355.
[11] 谢颖.几类具时变延迟的非线性随机微分方程的数值算法及理论[D].武汉:华中科技大学,2017.
[12] 万玮,刘朝霞.一种改进的欧拉弹性修补模型[J].计算机工程与应用,2017,53(13):196-200,239.
[13] 袁玲.随机(延迟)微分方程数值方法的研究[D].合肥:合肥工业大学,2013.
[14] MONOVASILIS T,KALOGIRATOU Z,SIMOS T E.Construction of exponentially fitted symplectic Runge-Kutta-Nyström methods from partitioned Runge-Kutta methods[J].Mediterranean journal of mathematics,2016,13(4):2271-2285.
[15] 郝杨阳.模糊微分方程的稳定性及数值解[D].保定:河北大学,2018.
[16] 冯建强,孙诗一.四阶龙格-库塔法的原理及其应用[J].数学学习与研究,2017(17):3-5.
[17] KERIMOV M K.Modern numerical methods for ordinary differential equations[J].USSR computational mathematics and mathematical physics,1980,20(3):281.
Similar References:
Memo

-

Last Update: 2021-10-11
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)