STATISTICS

Viewed70

Downloads19

Improved Particle Swarm Algorithm for B-spline Curve Path Planning of Unmanned Aerial Vehicles
[1]YANG Huogen,WANG Yan,et al.Improved Particle Swarm Algorithm for B-spline Curve Path Planning of Unmanned Aerial Vehicles[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):8-15.[doi:10.13705/j.issn.1671-6833.2025.04.014]
Copy
References:
[1] RADMANESH M, KUMAR M, GUENTERT P H, et al. Overview of path-planning and obstacle avoidance algorithms for UAVs: a comparative study [ J ] . Unmanned Systems, 2018, 6(2) : 95-118. 
[2] PUENTE-CASTRO A, RIVERO D, PAZOS A, et al. A review of artificial intelligence applied to path planning in UAV swarms [ J ] . Neural Computing and Applications, 2022, 34(1) : 153-170. 
[3] SUN J Y, TANG J, LAO S Y. Collision avoidance for cooperative UAVs with optimized artificial potential field algorithm[ J] . IEEE Access, 2017, 5: 18382-18390. 
[4] 陈江义, 殷笑勇, 王婷婷, 等. 基于改进斥力模型的 人工势 场 局 部 路 径 规 划 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023, 44(3) : 83-87, 101. 
CHEN J Y, YIN X Y, WANG T T, et al. Local path planning of artificial potential field based on improved repulsive model[ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, 44(3) : 83-87, 101. 
[5] AIT-SAADI A, MERAIHI Y, SOUKANE A, et al. A novel hybrid chaotic Aquila optimization algorithm with simulated annealing for unmanned aerial vehicles path planning[ J] . Computers and Electrical Engineering, 2022, 104: 108461. 
[6] JIN Q B, TANG C N, CAI W. Research on dynamic path planning based on the fusion algorithm of improved ant colony optimization and rolling window method[ J] . IEEE Access, 2021, 10: 28322-28332.
[7] XIONG T, LI H, DING K, et al. A hybrid improved symbiotic organisms search and sine-cosine particle swarm optimization method for drone 3D path planning [ J ] . Drones, 2023, 7(10) : 633. 
[8] 高岳林, 武少华. 基于自适应粒子群算法的机器人路 径规划[ J] . 郑州大学学报( 工学版) , 2020, 41( 4) : 46-51. 
GAO Y L, WU S H. Robot path planning based on adaptive particle swarm optimization[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 46-51. 
[9] BAO Y Y, LIU Y, WANG J S, et al. Genetic algorithm based on grid maps for solving robot path planning problem [J]. Engineering letters, 2023, 31(4): 1635-1648. 
[10] ROBERGE V, TARBOUCHI M, LABONTÉ G. Fast genetic algorithm path planner for fixed-wing military UAV using GPU[ J] . IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5) : 2105-2117. 
[11] 施法中. 计算机辅助几何设计与非均匀有理 B 样条 [M] . 2 版. 北京: 高等教育出版社, 2013. 
SHI F Z. CAGD & NURBS[M] . 2nd ed. Beijing: Higher Education Press, 2013. 
[12] HUO F C, ZHU S, DONG H L, et al. A new approach to smooth path planning of Ackerman mobile robot based on improved ACO algorithm and B-spline curve[ J] . Robotics and Autonomous Systems, 2024, 175: 104655. 
[13] LIU M J, ZHANG H X, YANG J, et al. A path planning algorithm for three-dimensional collision avoidance basedon potential field and B-spline boundary curve[ J] . Aerospace Science and Technology, 2024, 144: 108763. 
[14] YAN J F, DENG T, XU B H. Three dimensional path planning for flying car based on improved A algorithm and Bezier curve fusion[ J] . Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2025, 239(6) : 2205-2219. 
[15] PHUNG M D, HA Q P. Safety-enhanced UAV path planning with spherical vector-based particle swarm optimization[ J] . Applied Soft Computing, 2021, 107: 107376. 
[16] QI Z, SHAO Z H, PING Y S, et al. An improved heuristic algorithm for UAV path planning in 3D environment [ C]∥2010 Second International Conference on Intelligent Human-Machine Systems and Cybernetics. Piscataway: IEEE, 2010: 258-261. 
[17] 黄书召, 田军委, 乔路, 等. 基于改进遗传算法的无人 机路径规划[J]. 计算机应用, 2021, 41(2): 390-397. 
HUANG S Z, TIAN J W, QIAO L, et al. Unmanned aerial vehicle path planning based on improved genetic algorithm[ J] . Journal of Computer Applications, 2021, 41 (2) : 390-397. 
[18] SHI Y, EBERHART R. A modified particle swarm optimizer[C]∥IEEE World Congress on Computational Intelligence. Piscataway: IEEE, 2002: 69-73. 
[19] ARORA S, ANAND P. Chaotic grasshopper optimization algorithm for global optimization [ J] . Neural Computing and Applications, 2019, 31(8) : 4385-4405. 
[20] SHI Y, EBERHART R C. Empirical study of particle swarm optimization[ C]∥Congress on Evolutionary Computation. Piscataway: IEEE, 1999: 1945-1950. 
[21] ZHAO W G, WANG L Y, ZHANG Z X, et al. Electric eel foraging optimization: a new bio-inspired optimizer for engineering applications[ J] . Expert Systems with Applications, 2024, 238: 122200. 
[22] 宋志强, 夏庆锋, 陈少博, 等. 基于改进球面向量粒 子群优化的 UAV 航迹规划[ J] . 电光与控制, 2023, 30(4) : 56-60. 
SONG Z Q, XIA Q F, CHEN S B, et al. UAV path planning with improved spherical vector based particle swarm optimization [ J ] . Electronics Optics & Control, 2023, 30(4) : 56-60. 
[23] 李丁, 夏露. 改进的粒子群优化算法在气动设计中的 应用[ J] . 航空学报, 2012, 33(10) : 1809-1816. 
LI D, XIA L. Application of improved particle swarm optimization algorithm to aerodynamic design[ J]. Acta Aeronautica et Astronautica Sinica, 2012, 33 ( 10): 1809 - 1816.
Similar References:
Memo

-

Last Update: 2025-07-12
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)