STATISTICS

Viewed145

Downloads103

Group Aggregation Method of Mobile Robots Based on Swarm Intelligence Optimization Algorithm
[1]LIU Zhongchang,LI Guoliang.Group Aggregation Method of Mobile Robots Based on Swarm Intelligence Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):35-42.[doi:10.13705/j.issn.1671-6833.2025.02.021]
Copy
References:
[1]SHORINWA O, HALSTED T, YU J, et al. Distributed optimization methods for multi-robot systems: part 2—a survey[J]. IEEE Robotics & Automation Magazine, 2024, 31(3): 154-169. 
[2]张方方, 张文丽, 王婷婷. 基于速度补偿算法的多机器人编队控制研究[J]. 郑州大学学报(工学版), 2022, 43(2): 1-6, 14. 
ZHANG F F, ZHANG W L, WANG T T. Research on multi-robot formation control based on speed compensation algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(2): 1-6, 14. 
[3]AN X, WU C, LIN Y F, et al. Multi-robot systems and cooperative object transport: communications, platforms, and challenges[J]. IEEE Open Journal of the Computer Society, 2023, 4: 23-36. 
[4]QUERALTA J P, TAIPALMAA J, CAN PULLINEN B, et al. Collaborative multi-robot search and rescue: planning, coordination, perception, and active vision[J]. IEEE Access, 2020, 8: 191617-191643. 
[5]DUBEY R, GUPTA S, CHAUDHARY S, et al. Finitetime convergence of multi-robot segregation using MPC with aperiodic motion smoothing[C]∥2024 IEEE 20th International Conference on Automation Science and Engineering (CASE). Piscataway: IEEE, 2024: 2209-2214. 
[6]FERREIRA FILHO E B, PIMENTA L C A. Segregation of heterogeneous swarms of robots in curves[C]∥2020 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2020: 7173-7179. 
[7]郝肇铁, 郭斌, 赵凯星, 等. 从规则驱动到群智涌现: 多机器人空地协同研究综述[J]. 自动化学报, 2024, 50(10): 1877-1905. 
HAO Z T, GUO B, ZHAO K X, et al. From rule-driven to collective intelligence emergence: a review of research on multi-robot air-ground collaboration[J]. Acta Automatica Sinica, 2024, 50(10): 1877-1905. 
[8]侯岳奇, 陶浩, 龚俊斌, 等. 多约束条件下无人艇和无人机集群协同航迹规划[J]. 中国舰船研究, 2021, 16(1): 74-82. 
HOU Y Q, TAO H, GONG J B, et al. Cooperative path planning of USV and UAV swarms under multiple constraints[J]. Chinese Journal of Ship Research, 2021, 16 (1): 74-82. 
[9]KUMAR M, GARG D P, KUMAR V. Segregation of heterogeneous units in a swarm of robotic agents[J]. IEEE Transactions on Automatic Control, 2010, 55(3): 743-748. 
[10] SANTOS V G, PIRES A G, ALITAPPEH R J, et al. Spatial segregative behaviors in robotic swarms using differential potentials[J]. Swarm Intelligence, 2020, 14 (4): 259-284. 
[11] FILHO E B F, PIMENTA L C A. Segregating multiple groups of heterogeneous units in robot swarms using abstractions[C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2015: 401-406. 
[12] FERREIRA-FILHO E B, PIMENTA L C A. Abstraction based approach for segregation in heterogeneous robotic swarms[J]. Robotics and Autonomous Systems, 2019, 122: 103295. 
[13] OMOTUYI O, KUMAR M. Learning decentralized controllers for segregation of heterogeneous robot swarms with graph neural networks[C]∥2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS). Piscataway: IEEE, 2022: 1-6. 
[14] LIU Z C, WONG W S. Group consensus of linear multiagent systems under nonnegative directed graphs[J]. IEEE Transactions on Automatic Control, 2022, 67(11): 6098-6105. 
[15] HASSAN K, TAHIR F, REHAN M, et al. On relativeoutput feedback approach for group consensus of clusters of multiagent systems[J]. IEEE Transactions on Cybernetics, 2023, 53(1): 55-66. 
[16] LEI W Y, LIU Z C, LIU J H. Flocking control for multiple subgroups based on multi-hop communication and connectivity maintenance strategies[C]∥The 14th Asian Control Conference (ASCC). Piscataway: IEEE, 2024: 2248-2253. 
[17] GROSS R, MAGNENAT S, MONDADA F. Segregation in swarms of mobile robots based on the Brazil nut effect[C]∥2009 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway:IEEE, 2009: 4349-4356. 
[18] CHEN J, GAUCI M, PRICE M J, et al. Segregation in swarms of e-puck robots based on the Brazil nut effect[C]∥ Proceedings of the 11th International Conference on Autonomous Agents and Multi-Agent Systems. Piscataway: IEEE, 2012: 163-170. 
[19] JOSHI D, SHIMIZU M, HOSODA K. Segregation and flow of modules in a robot swarm utilising the Brazil nut effect[C]∥2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE, 2019: 4080-4085. 
[20] REZECK P, ASSUNÇÃO R M, CHAIMOWICZ L. Flocking-segregative swarming behaviors using Gibbs random fields[C]∥2021 IEEE International Conference on Robotics and Automation (ICRA). Piscataway: IEEE, 2021: 8757-8763. 
[21] INÁCIO F R, MACHARET D G, CHAIMOWICZ L. PSO-based strategy for the segregation of heterogeneous robotic swarms[J]. Journal of Computational Science, 2019, 31: 86-94. 
[22] MIRJALILI S, MIRJALILI S, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61. 
[23] VAN DEN BERG J, GUY S J, LIN M, et al. Reciprocal n-body collision avoidance[C]∥The 14th International Symposium ISRR. Berlin: Springer, 2011: 3-19. 
[24]甘福宝, 王仲阳, 连寅行, 等. 基于改进灰狼优化算法的移动机器人路径规划方法[J]. 传感器与微系统, 2024, 43(8): 110-113. 
GAN F B, WANG Z Y, LIAN Y H, et al. Path planning method of mobile robot based on improved grey wolf optimization algorithm[J]. Transducer and Microsystem Technologies, 2024, 43(8): 110-113. 
[25]张晓凤, 王秀英. 灰狼优化算法研究综述[J]. 计算机科学, 2019, 46(3): 30-38. 
ZHANG X F, WANG X Y. Comprehensive review of grey wolf optimization algorithm[J]. Computer Science, 2019, 46(3): 30-38.
Similar References:
Memo

-

Last Update: 2025-03-13
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)