STATISTICS

Viewed28

Downloads21

Wildfire Detection for Transmission Corridor Based on Improved YOLOv8s
[1]ZHOU Enze,HUANG Daochun,WANG Lei,et al.Wildfire Detection for Transmission Corridor Based on Improved YOLOv8s[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):114-121.[doi:10.13705/j.issn.1671-6833.2025.05.017]
Copy
References:
[1]黄道春, 黎鹏, 阮江军, 等. 山火引发输电线路间隙放电机理与击穿特性综述[J]. 高电压技术, 2015, 41 (2): 622-632. 
HUANG D C, LI P, RUAN J J, et al. Review on discharge mechanism and breakdown characteristics of transmission line gap under forest fire condition[J]. High Voltage Engineering, 2015, 41(2): 622-632. 
[2]胡毅, 刘凯, 吴田, 等. 输电线路运行安全影响因素分析及防治措施[J]. 高电压技术, 2014, 40(11): 3491-3499. 
HU Y, LIU K, WU T, et al. Analysis of influential factors on operation safety of transmission line and countermeasures[J]. High Voltage Engineering, 2014, 40 (11): 3491-3499. 
[3]陆佳政, 周特军, 吴传平, 等. 某省级电网220 kV及以上输电线路故障统计与分析[J]. 高电压技术, 2016, 42(1): 200-207. 
LU J Z, ZHOU T J, WU C P, et al. Fault statistics and analysis of 220 kV and above power transmission line in province-level power grid[J]. High Voltage Engineering, 2016, 42(1): 200-207. 
[4]张敏, 戴栋, 谢从珍, 等. 基于激光雷达技术的输电线路山火监测方法研究[J]. 电测与仪表, 2015, 52 (15): 101-107. 
ZHANG M, DAI D, XIE C Z, et al. Study on monitoring wildfire around power transmission line based on lidar [J]. Electrical Measurement & Instrumentation, 2015, 52(15): 101-107. 
[5]叶立平, 陈锡阳, 何子兰, 等. 山火预警技术在输电线路的应用现状[J]. 电力系统保护与控制, 2014, 42 (6): 145-153. 
YE L P, CHEN X Y, HE Z L, et al. Present situation of forest fire early warning technology used for transmission line[J]. Power System Protection and Control, 2014, 42 (6): 145-153. 
[6]陈钦柱, 赵海龙, 余阳. 基于无人机的电力传输线山火灾害监测技术研究[J]. 自动化与仪器仪表, 2019 (4): 242-245, 250. 
CHEN Q Z, ZHAO H L, YU Y. Research on monitoring technology of mountain fire disaster based on UAV′s power transmission line[J]. Automation & Instrumentation, 2019(4): 242-245, 250. 
[7]杨传凯, 吴兵, 孔敏儒, 等. 基于输电巡检图像的山火智能识别方法[J]. 电力信息与通信技术, 2021, 19 (1): 66-72. 
YANG C K, WU B, KONG M R, et al. Intelligent identification method of mountain fire based on the inspection image of power transmission[J]. Electric Power Information and Communication Technology, 2021, 19(1): 66-72. 
[8]REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
[9]REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2020-04-23)[2024-12-26]. https:∥doi.org/10.48550/arXiv.2004.10934. 
[10] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2024-12-26]. https:∥doi. org/10. 48550/arXiv.2004.10934. 
[11] LI P, ZHAO W D. Image fire detection algorithms based on convolutional neural networks[J]. Case Studies in Thermal Engineering, 2020, 19: 100625. 
[12]张坚鑫, 郭四稳, 张国兰, 等. 基于多尺度特征融合的火灾检测模型[J]. 郑州大学学报(工学版), 2021, 42(5): 13-18. 
ZHANG J X, GUO S W, ZHANG G L, et al. Fire detection model based on multi-scale feature fusion[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(5): 13-18. 
[13]卢鹏, 赵亚琴, 陈越, 等. 复杂背景环境下基于SSDMobileNet深度学习模型的火焰图像识别研究[J]. 火灾科学, 2020, 29(3): 142-149. 
LU P, ZHAO Y Q, CHEN Y, et al. Flame recognition in complex environment based on deep learning model SSDMobileNet[J]. Fire Safety Science, 2020, 29(3): 142-149. 
[14]王一旭, 肖小玲, 王鹏飞, 等. 改进YOLOv5s的小目标烟雾火焰检测算法[J]. 计算机工程与应用, 2023, 59(1): 72-81. 
WANG Y X, XIAO X L, WANG P F, et al. Improved YOLOv5s small target smoke and fire detection algorithm [J]. Computer Engineering and Applications, 2023, 59 (1): 72-81. 
[15] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[EB/OL].(2022-09-16)[2024-12-26]. https:∥doi.org/10.48550/arXiv.2209.07947. 
[16] DAI X Y,CHEN Y P,XIAO B,et al.Dynamic head: unifying object detection heads with attentions[EB/OL]. (2021-06-15) [2024-12-26]. https:∥doi. org/ 10.48550/arXiv.2106.08322. 
[17] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL]. (2023-01-24)[2024-12-26]. https:∥arxiv.org/abs/2301.10051. 
[18] Ultralytics. YOLOv5[EB/OL]. (2020-06-26) [202412-26]. https:∥g ithub.com/ultralytics/YOLOv5. 
[19]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors[C]∥Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.Piscataway:IEEE, 2023: 7464-7475. 
[20] REN S,HE K,GIRSHICK R,et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
Similar References:
Memo

-

Last Update: 2025-09-19
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)