STATISTICS

Viewed31

Downloads21

Hippocampus Image Segmentation Based on Multi-view Fusion and 2.5D U-Net
[1]CHEN Liwei,PENG Yifei,YU Renping,et al.Hippocampus Image Segmentation Based on Multi-view Fusion and 2.5D U-Net[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):26-34.[doi:10.13705/j.issn.1671-6833.2025.02.013]
Copy
References:
[1]SÄMANN P G, IGLESIAS J E, GUTMAN B, et al. FreeSurfer-based segmentation of hippocampal subfields: a review of methods and applications, with a novel quality control procedure for ENIGMA studies and other collaborative efforts[J]. Human Brain Mapping, 2022, 43(1): 207-233. 
[2]JOULES R, WOLZ R. Fully automatic deep-learning based segmentation of hippocampal subfields from standard resolution T1W MRI in Alzheimer′s disease[J]. Alzheimer′s & Dementia, 2023, 19: e076575. 
[3]SACKL M, TINAUER C, URSCHLER M, et al. Fully automated hippocampus segmentation using T2-informed deep convolutional neural networks[J]. NeuroImage, 2024, 298: 120767. 
[4]NI T W, XIE L X, ZHENG H J, et al. Elastic boundary projection for 3D medical image segmentation[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2109-2118. 
[5]LIU M H, LI F, YAN H, et al. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer′s disease[J]. NeuroImage, 2020, 208: 116459. 
[6]ÇIÇEK Ö, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]∥Medical Image Computing and Computer-Assisted Intervention. Cham:Springer, 2016: 424-432. 
[7]MANJON J V, ROMERO J E, COUPE P. A novel deep learning based hippocampus subfield segmentation method [J]. Scientific Reports, 2022, 12(1): 1333. 
[8]KNUTH F, ADDE I A, HUYNH B N, et al. MRI-based automatic segmentation of rectal cancer using 2D U-Net on two independent cohorts[J]. Acta Oncologica, 2022, 61(2): 255-263. 
[9]ZETTLER N, MASTMEYER A. Comparison of 2D vs. 3D U-Net organ segmentation in abdominal 3D CT images [EB/OL].(2021-07-08)[2024-07-16].https:∥doi. org/10.48550/arXiv.2107.04062. 
[10] ROTH H R, LU L, SEFF A, et al. A new 2.5D representation for lymph node detection using random sets of deep convolutional neural network observations[C]∥ Medical Image Computing and Computer Assisted Intervention. Cham: Springer International Publishing, 2014: 520-527. 
[11] ROTH H R, LU L, FARAG A, et al. DeepOrgan: multilevel deep convolutional networks for automated pancreas segmentation[C]∥Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2015: 556-564. 
[12] YU Q H, XIE L X, WANG Y, et al. Recurrent saliency transformation network: incorporating multi-stage visual cues for small organ segmentation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018: 8280-8289. 
[13] CHEN J, LU Y, YU Q, et al. TransUNet: Transformers make strong encoders for medical image segmentation [EB/OL].(2021-02-08)[2024-07-16].https:∥doi. org/10.48550/arXiv.2102.04306. 
[14]欧宇轩, 高敏, 赵地, 等. SA-TF-UNet: 基于空间注意力机制和Transformer的MRI海马体分割[J]. 中国图象图形学报, 2023, 28(10): 3191-3202. 
OU Y X, GAO M, ZHAO D, et al. SA-TF-UNet: a Transformer and spatial attention mechanisms based hippocampus segmentation network[J]. Journal of Image and Graphics, 2023, 28(10): 3191-3202. 
[15] OKTAY O, SCHLEMPER J, LE FOLGOC L, et al. Attention U-Net: learning where to look for the pancreas [EB/OL].(2018-04-18) [2024-07-16] . https:∥ doi.org/10.48550/arXiv.1804.03999. 
[16]WANG H, LEI C, ZHAO D, et al. DeepHipp: accurate segmentation of hippocampus using 3D dense-block based on attention mechanism[J]. BMC Medical Imaging, 2023, 23(1): 158. 
[17]魏明军, 王镆涵, 刘亚志, 等. 基于特征融合和混合注意力的小目标检测[J]. 郑州大学学报(工学版), 2024, 45(3): 72-79. 
WEI M J, WANG M H, LIU Y Z, et al. Small object detection based on feature fusion and mixed attention[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 72-79. 
[18]高宇飞, 马自行, 徐静, 等. 基于卷积和可变形注意力的脑胶质瘤图像分割[J]. 郑州大学学报(工学版), 2024, 45(2): 27-32. 
GAO Y F, MA Z X, XU J, et al. Brain glioma image segmentation based on convolution and deformable attention[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(2): 27-32. 
[19] ZHOU Y Y, XIE L X, SHEN W, et al. A fixed-point model for pancreas segmentation in abdominal CT scans [C]∥Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2017: 693-701. 
[20] XIA Y D, XIE L X, LIU F Z, et al. Bridging the gap between 2D and 3D organ segmentation with Volumetric Fusion Net[C]∥Medical Image Computing and Computer Assisted Intervention. Cham: Springer, 2018: 445-453. 
[21] BOCCARDI M, BOCCHETTA M, MORENCY F C, et al. Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol[J]. Alzheimer′s & Dementia,2015, 11(2): 175-183. 
[22] AVESTA A, HOSSAIN S, LIN M D, et al. Comparing 3D, 2.5D, and 2D approaches to brain image auto-segmentation[J]. Bioengineering, 2023, 10(2): 181. 
[23] ATALOGLOU D, DIMOU A, ZARPALAS D, et al. Fast and precise hippocampus segmentation through deep convolutional neural network ensembles and transfer learning[J]. Neuroinformatics, 2019, 17(4): 563-582. 
[24] CARMO D, SILVA B, INITIATIVE A D N, et al. Hippocampus segmentation on epilepsy and Alzheimer′s disease studies with multiple convolutional neural networks[J]. Heliyon, 2021, 7(2): e06226. 
[25] NOBAKHT S, SCHAEFFER M, FORKERT N D, et al. Combined atlas and convolutional neural network-based segmentation of the hippocampus from MRI according to the ADNI harmonized protocol[J]. Sensors, 2021, 21 (7):2427. 
[26] CHEN Y, YUE H L, KUANG H L, et al. RBS-Net: hippocampus segmentation using multi-layer feature learning with the region, boundary and structure loss[J]. Computers in Biology and Medicine, 2023, 160: 106953. 
[27] ZHENG Q, LIU B, GAO Y, et al. HGM-cNet: integrating hippocampal gray matter probability map into a cascaded deep learning framework improves hippocampus segmentation[J]. European Journal of Radiology, 2023, 162: 110771.
Similar References:
Memo

-

Last Update: 2025-09-19
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)