STATISTICS

Viewed27

Downloads21

Modulation Recognition of Frequency Hopping Signal under Interference Based on Improved YOLOv5s
[1]ZHANG Haibin,WEI Hongji,WANG Chao,et al.Modulation Recognition of Frequency Hopping Signal under Interference Based on Improved YOLOv5s[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):43-50.[doi:10.13705/j.issn.1671-6833.2025.05.008]
Copy
References:
[1]李红光, 郭英, 眭萍, 等. 基于时频能量谱纹理特征的跳频调制方式识别[J]. 通信学报, 2019, 40(10): 20-29. 
LI H G, GUO Y, SUI P, et al. Frequency hopping modulation recognition based on time-frequency energy spectrum texture feature[J]. Journal on Communications, 2019, 40(10): 20-29. 
[2]张萌, 王文, 任俊星, 等. 基于HOG-SVM的跳频信号检测识别算法[J]. 信息安全学报, 2020, 5(3): 62-77. 
ZHANG M, WANG W, REN J X, et al. Detection and recognition algorithm for frequency hopping signals based on HOG-SVM[J]. Journal of Cyber Security, 2020, 5 (3): 62-77. 
[3]胡晓芳. 基于稀疏性的跳频信号检测技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018. 
HU X F. Research on frequency hopping signal detection technology based on sparsity[D]. Harbin: Harbin Engineering University, 2018. 
[4]HUANG D K, YAN X P, HAO X H, et al. Low SNR multi-emitter signal sorting and recognition method based on low-order cyclic statistics CWD time-frequency images and the YOLOv5 deep learning model[J]. Sensors, 2022, 22(20): 7783. 
[5]周凯. 基于YOLOv5的跳频信号调制方式检测识别[J]. 数字通信世界, 2022(11): 8-10. 
ZHOU K. Detection and identification of frequency hopping signal modulation based on YOLOv5[J]. Digital Communication World, 2022(11): 8-10. 
[6]WANG Y Y, HE S R, WANG C R, et al. Detection and parameter estimation of frequency hopping signal based on the deep neural network[J]. International Journal of Electronics, 2022, 109(3): 520-536. 
[7]CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807. 
[8]GIRSHICK R. Fast R-CNN[C]∥2015 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015: 1440-1448. 
[9]REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition .Piscataway:IEEE, 2016: 779-788. 
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]∥Lecture Notes in Computer Science. Cham: Springer, 2016: 21-37. 
[12] YANG J W, LI C Y, DAI X Y, et al. Focal modulation networks[EB/OL].(2022-03-22)[2025-01-02]. https:∥doi.org/10.48550/arXiv.2203.11926. 
[13]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE,2022: 7464-7475. 
[14] VARGHESE R, SAMBATH M. YOLOv8: A novel object detection algorithm with enhanced performance and robustness[C]∥2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems.Piscataway:IEEE, 2024: 1-6.
Similar References:
Memo

-

Last Update: 2025-09-19
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)