STATISTICS

Viewed132

Downloads94

Intelligent Site Selection of Distributed Photovoltaic Power Stations Based on a Multi-site Forecasting Model
[1]SONG Ling,CHANG Longtao,LYU Shunming,et al.Intelligent Site Selection of Distributed Photovoltaic Power Stations Based on a Multi-site Forecasting Model[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):119-126.[doi:10.13705/j.issn.1671-6833.2025.02.016]
Copy
References:
[1]DOLARA A, LEVA S, MANZOLINI G. Comparison of different physical models for PV power output prediction [J]. Solar Energy, 2015, 119: 83-99. 
[2]QIU X H, ZHANG L, REN Y, et al. Ensemble deep learning for regression and time series forecasting[C]∥ 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL). Piscataway: IEEE, 2014: 1-6. 
[3]TIAN J, OOKA R, LEE D. Multi-scale solar radiation and photovoltaic power forecasting with machine learning algorithms in urban environment: a state-of-the-art review [J]. Journal of Cleaner Production, 2023, 426: 139040. 
[4]MOO E J A, DZIB J T, CANTO-ESQUIVEL J, et al. Deep learning for photovoltaic power plant forecasting[C]∥ Communications in Computer and Information Science. Cham:Springer International Publishing, 2018:56-66. 
[5]李章晓, 宋微, 田野. 基于深度学习和进化计算的外汇预测与投资组合优化[J]. 郑州大学学报(工学版), 2019,40(1): 92-96. 
LI Z X, SONG W, TIAN Y. Exchange rate forecasting and portfolio optimization based on deep learning and evolutionary computation[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(1): 92-96. 
[6]YANG X Y, XU M L, XU S C, et al. Day-ahead forecasting of photovoltaic output power with similar cloud space fusion based on incomplete historical data mining [J]. Applied Energy, 2017, 206: 683-696. 
[7]LAI C S, ZHONG C K, PAN K D, et al. A deep learning based hybrid method for hourly solar radiation forecasting[J]. Expert Systems with Applications, 2021, 177: 114941. 
[8]GAO Y Y, LI P, YANG H F, et al. A solar radiation intelligent forecasting framework based on feature selection and multivariable fuzzy time series[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 106986. 
[9]FANG H, LI J, SONG W Y. Sustainable site selection for photovoltaic power plant: an integrated approach based on prospect theory[J]. Energy Conversion and Management, 2018, 174: 755-768. 
[10] ALAMI MERROUNI A, ELWALI ELALAOUI F, MEZRHAB A, et al. Large scale PV sites selection by combining GIS and analytical hierarchy process. case study: eastern Morocco[J]. Renewable Energy, 2018, 119: 863-873. 
[11] BAWAZIR R O, ÇETIN N S, FADEL W. Optimum PV distributed generation based on grid and geographical area: a case study of Aden governorate, Yemen[J]. Energy Conversion and Management, 2023, 297: 117703. 
[12] LAN H, YIN H, HONG Y Y, et al. Day-ahead spatiotemporal forecasting of solar irradiation along a navigation route[J]. Applied Energy, 2018, 211: 15-27. 
[13] JEONG J, KIM H. Multi-site photovoltaic forecasting exploiting space-time convolutional neural network[J]. Energies, 2019, 12(23): 4490. 
[14] AGOUA X G, GIRARD R, KARINIOTAKIS G. Shortterm spatio-temporal forecasting of photovoltaic power production[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 538-546. 
[15]WANG Y L, ZHENG Y, XUE Y X. Travel time estimation of a path using sparse trajectories[C]∥Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York : ACM, 2014: 25-34. 
[16] SHAFIQ M, GU Z Q. Deep residual learning for image recognition: a survey[J]. Applied Sciences, 2022, 12 (18): 8972. 
[17] HE K M, ZHANG X Y, REN S Q, et al. Identity mappings in deep residual networks[M]∥Lecture Notes in Computer Science. Cham: Springer International Publishing, 2016: 630-645.
[18] CUBILLOS M. Multi-site household waste generation forecasting using a deep learning approach[J]. Waste Management, 2020, 115: 8-14. 
[19] GUTIERREZ-COREA F V, MANSO-CALLEJO M A, MORENO-REGIDOR M P, et al. Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations[J]. Solar Energy, 2016, 134: 119-131. 
[20] MARZOUQ M, ELFADILI H, ZENKOUAR K, et al. Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data[J]. Renewable Energy, 2020, 157: 214-231. 
[21] PERSSON C, BACHER P, SHIGA T, et al. Multi-site solar power forecasting using gradient boosted regression trees[J]. Solar Energy, 2017, 150: 423-436. 
[22]WANG K J, QI X X, LIU H D. A comparison of day-ahead photovoltaic power forecasting models based on deep learning neural network[J]. Applied Energy, 2019, 251: 113315. 
[23] ZHANG J B, ZHENG Y, QI D K. Deep spatio-temporal residual networks for citywide crowd flows prediction[EB/ OL].(2016-10-01)[2024-09-02].https:∥doi. org/ 10.48550/arXiv.1610.00081.
Similar References:
Memo

-

Last Update: 2025-03-13
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)