STATISTICS

Viewed131

Downloads94

Fuzzy Classification Surrogate-assisted Evolutionary Algorithm Based on Adaptive Sampling Strategy
[1]LI Erchao,WU Yu.Fuzzy Classification Surrogate-assisted Evolutionary Algorithm Based on Adaptive Sampling Strategy[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):51-59.[doi:10.13705/j.issn.1671-6833.2025.02.010]
Copy
References:
[1]郑金华. 多目标进化算法及其应用[M]. 北京: 科学出版社, 2007. 
ZHENG J H. Multi objective evolutionary algorithm and its applications [M]. Beijing: Science Press, 2007. 
[2]FAN X Z, LI K, TAN K C. Surrogate assisted evolutionary algorithm based on transfer learning for dynamic expensive multi-objective optimisation problems[C]∥2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway:IEEE, 2020: 1-8. 
[3]邓传义, 孙超利, 刘晓彤, 等. 惯性分组和重叠特征选择辅助的昂贵大规模优化算法[J]. 郑州大学学报(工学版), 2023, 44(5): 32-39. 
DENG C Y, SUN C L, LIU X T, et al. An inertial grouping and overlapping feature selection assisted algorithm for expensive large-scale optimization problems[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 32-39. 
[4]WANG R Y, ZHOU Y E, CHEN H N, et al. A surrogate-assisted many-objective evolutionary algorithm using multi-classification and coevolution for expensive optimization problems[J]. IEEE Access, 2021, 9: 159160-159174. 
[5]温文吉. 克里金代理模型和多目标优化算法在天线设计中的应用[D]. 镇江: 江苏科技大学, 2020. 
WEN W J. Application of Kriging proxy model and multiobjective optimization algorithm in antenna design[D]. Zhenjiang: Jiangsu University of Science and Technology, 2020. 
[6]郭单. 数据与模型驱动的复杂工业过程智能优化方法及应用研究[D]. 沈阳: 东北大学, 2019. 
GUO D. Research on intelligent optimization method and application of complex industrial process driven by data and model[D]. Shenyang: Northeastern University, 2019. 
[7]DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part Ⅰ: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. 
[8]GU Q H, WANG Q, LI X X, et al. A surrogate-assisted multi-objective particle swarm optimization of expensive constrained combinatorial optimization problems [J]. Knowledge-Based Systems, 2021, 223: 107049. 
[9]CHUGH T, JIN Y C, MIETTINEN K, et al. A surrogateassisted reference vector guided evolutionary algorithm for computationally expensive many-objective optimization [J]. IEEE Transactions on Evolutionary Computation, 2018, 22(1): 129-142. 
[10] SONG Z S, WANG H D, HE C, et al. A Kriging-assisted two-archive evolutionary algorithm for expensive manyobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2021, 25(6): 1013-1027. 
[11] KELLER J M, GRAY M R, GIVENS J A. A fuzzy Knearest neighbor algorithm[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1985, SMC-15(4): 580-585. 
[12] ZHANG J Y, ZHOU A M, ZHANG G X. A classification and Pareto domination based multiobjective evolutionary algorithm[C]∥2015 IEEE Congress on Evolutionary Computation (CEC). Piscataway: IEEE, 2015: 2883-2890. 
[13] PAN L Q, HE C, TIAN Y, et al. A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2019, 23(1): 74-88. 
[14] HAO H, ZHOU A M, QIAN H, et al. Expensive multiobjective optimization by relation learning and prediction [J]. IEEE Transactions on Evolutionary Computation, 2022, 26(5): 1157-1170. 
[15] SONODA T, NAKATA M. Multiple classifiers-assisted evolutionary algorithm based on decomposition for high-dimensional multiobjective problems[J]. IEEE Transactions on Evolutionary Computation, 2022, 26(6): 15811595. 
[16] LI M Q, YANG S X, LIU X H. Shift-based density estimation for Pareto-based algorithms in many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(3): 348-365. 
[17] KUMBURE M M, LUUKKA P, COLLAN M. An enhancement of fuzzy K-nearest neighbor classifier using multi-local power means[C]∥Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Paris: Atlantis Press, 2019: 83-90. 
[18] CHENG R, LI M Q, TIAN Y, et al. A benchmark test suite for evolutionary many-objective optimization[J]. Complex & Intelligent Systems, 2017, 3(1): 67-81. 
[19] HUBAND S, HINGSTON P, BARONE L, et al. A review of multiobjective test problems and a scalable test problem toolkit[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(5): 477-506. 
[20] ISHIBUCHI H, MASUDA H, TANIGAKI Y, et al. Modified distance calculation in generational distance and inverted generational distance[C]∥The 8th International Conference of Evolutionary Multi-criterion Optimization. Cham: Springer, 2015: 110-125. 
[21] TANABE R, ISHIBUCHI H. An easy-to-use real-world multi-objective optimization problem suite[J]. Applied Soft Computing, 2020, 89: 106078.
Similar References:
Memo

-

Last Update: 2025-03-13
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)