STATISTICS

Viewed139

Downloads93

Performance Evaluation of Cascade Non-Gaussian Systems Based on Image Processing Index
[1]ZHANG Jinfang,ZHOU Yulong,WANG Tongyu,et al.Performance Evaluation of Cascade Non-Gaussian Systems Based on Image Processing Index[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):75-81.[doi:10.13705/j.issn.1671-6833.2025.02.015]
Copy
References:
[1] PIMENTEL M R, MUNARO C J. Performance monitoring and retuning for cascaded control loops[C]∥The 15th IEEE International Conference on Industry Applications (INDUSCON). Piscataway: IEEE, 2023: 647-654. 
[2] TAN S B, YU X, WANG H H, et al. Performance assessment of cascade control systems based on LQG benchmark[C]∥2016 Chinese Control and Decision Conference (CCDC). Piscataway:IEEE, 2016: 49-52. 
[3] JIA Y, ZHOU J L, LI D Z. Performance assessment of cascade control loops with non-Gaussian disturbances[C]∥ 2018 Chinese Automation Congress (CAC). Piscataway: IEEE, 2018: 2451-2456. 
[4] 刘阳, 王亚刚. 最小熵基准的并行串级控制系统的性能评估[J]. 控制工程, 2019, 26(10): 1899-1904. LIU Y, WANG Y G. Performance assessment of parallel cascade control system based on minimum entropy[J]. Control Engineering of China, 2019, 26(10): 1899-1904. 
[5] ZHANG Q, WANG Y G, LEE F F, et al. Improved renyi entropy benchmark for performance assessment of common cascade control system[J]. IEEE Access, 1074, 7: 6796-6803. 
[6] 黄国豆. 非高斯随机系统控制回路性能评估方法的研究[D]. 北京: 华北电力大学, 2022. HUANG G D. Research on performance evaluation method of control loop of non-Gaussian stochastic system[D]. Beijing: North China Electric Power University, 2022. 
[7] ZHANG H, ZHOU J L, WANG J. Performance assessment of non-Gaussian systems based on double error entropy minimization[C]∥The IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS). Piscataway:IEEE, 2019: 1177-1182. 
[8] ZHANG J F, HUANG G D, ZHANG L. Generalized correntropy criterion-based performance assessment for nonGaussian stochastic systems[J]. Entropy, 2021, 23(6): 764. 
[9] HORÉ A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]∥The 20th International Conference on Pattern Recognition. Piscataway:IEEE, 2010: 2366-2369. 
[10]胡文, 景玉海. 基于KL散度与JS散度相似度融合推荐算法[J]. 哈尔滨商业大学学报(自然科学版), 2020, 36(1): 48-53. HU W, JING Y H. Recommendation algorithm based on fusion of KL divergence and JS divergence similarity[J]. Journal of Harbin University of Commerce (Natural Sciences Edition), 2020, 36(1): 48-53. 
[11] JIANG H X, ZHOU J L, FAN S Y, et al. Analysis on control performance assessment based on minimum entropy[C]∥2018 IEEE 4th International Conference on Computer and Communications (ICCC). Piscataway:IEEE, 2018: 2731-2735. 
[12]高岳林, 杨钦文, 王晓峰, 等. 新型群体智能优化算法综述[J]. 郑州大学学报(工学版), 2022, 43(3): 21-30. GAO Y L, YANG Q W, WANG X F, et al. Overview of new swarm intelligent optimization algorithms[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(3): 21-30. 
[13]薛涛, 张安杰. 多策略改进的麻雀搜索算法及应用[J]. 西安工程大学学报, 2023, 37(2): 96-104. XUE T, ZHANG A J. Improved sparrow search algorithm based on multiple strategies and its application[J]. Journal of Xi’an Polytechnic University, 2023, 37(2): 96-104. 
[14] MIRJALILI S. SCA: a sine cosine algorithm for solving optimization problems[J]. Knowledge-Based Systems, 2016, 96: 120-133. 
[15] ZHANG J, WANG J S. Improved salp swarm algorithm based on Levy flight and sine cosine operator[J]. IEEE Access, 2020, 8: 99740-99771.
Similar References:
Memo

-

Last Update: 2025-03-13
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)