STATISTICS

Viewed390

Downloads375

Analysis and Evaluation Model of Smart Grid Operation State Basedon Graph Neural Network
[1]LIU Huilin,FAN Ruiming,CHENG Dachuang,et al.Analysis and Evaluation Model of Smart Grid Operation State Basedon Graph Neural Network[J].Journal of Zhengzhou University (Engineering Science),2024,45(06):122-128.[doi:10.13705/j.issn.1671-6833.2024.06.017]
Copy
References:
[1] SHI Z T, YAO W, ZENG L K, et al. Convolutional neural network-based power system transient stability assessment and instability mode prediction[ J] . Applied Energy, 2020, 263: 114586.
[2] ZADKHAST P, JATSKEVICH J, VAAHEDI E. A multidecomposition approach for accelerated time-domain simulation of transient stability problems [ J] . IEEE Transactions on Power Systems, 2015, 30(5) : 2301-2311.
[3] OUBBATI Y, ARIF S. Securing transient stability assessment using single machine equivalent SIME method[C]∥2015 4th International Conference on Electrical Engineering ( ICEE) . Piscataway: IEEE, 2015: 1-4.
[4] GUPTA A, GURRALA G, SASTRY P S. An online power system stability monitoring system using convolutionalneural networks [ J] . IEEE Transactions on Power Systems, 2019, 34(2) : 864-872.
[5] CHIANG H D. Foundations of the potential energyboundary surface method[ J] . Direct Methods for StabilityAnalysis of Electric Power Systems: Theoretical Foundation, BCU Methodologies, and Applications, 2011: 148-176.
[6] LI S Y, AJJARAPU V, DJUKANOVIC M. Adaptive online monitoring of voltage stability margin via local regression[ J] . IEEE Transactions on Power Systems, 2018, 33(1) : 701-713.
[7] GUO T Y, MILANOVI C’J V. Online identification ofpower system dynamic signature using PMU measurementsand data mining [ J] . IEEE Transactions on Power Systems, 2016, 31(3) : 1760-1768.
[8] YU J J Q, HILL D J, LAM A Y S, et al. Intelligenttime-adaptive transient stability assessment system [ J ] .IEEE Transactions on Power Systems, 2018, 33 ( 1 ) :1049-1058.
[9] YAN R, GENG G C, JIANG Q Y, et al. Fast transientstability batch assessment using cascaded convolutionalneural networks [ J] . IEEE Transactions on Power Systems, 2019, 34(4) : 2802-2813.
[10] KRISHNATHEVAR R, NGU E E. Generalized impedance-based fault location for distribution systems [ J ] .IEEE Transactions on Power Delivery, 2012, 27 ( 1 ) :449-451.
[11] MAJIDI M, ETEZADI-AMOLI M. A new fault locationtechnique in smart distribution networks using synchronized / nonsynchronized measurements[ J] . IEEE Transactions on Power Delivery, 2018, 33(3) : 1358-1368.
[12] LOTFIFARD S, KEZUNOVIC M, MOUSAVI M J. Voltage sag data utilization for distribution fault location[ J] .IEEE Transactions on Power Delivery, 2011, 26 ( 2 ) :1239-1246.
[13] HOSSEINI Z S, MAHOOR M, KHODAEI A. AMI-enabled distribution network line outage identification viamulti-label SVM[ J] . IEEE Transactions on Smart Grid,2018, 9(5) : 5470-5472.
[14] ASLAN Y, YAGˇAN Y E. Artificial neural-network-basedfault location for power distribution lines using the frequency spectra of fault data[ J] . Electrical Engineering,2017, 99(1) : 301-311.
[15] MORA-FLOREZ J, BARRERA-NUNEZ V, CARRILLO-CAICEDO G. Fault location in power distribution systemsusing a learning algorithm for multivariable data analysis[ J] . IEEE Transactions on Power Delivery, 2007, 22(3) : 1715-1721.
[16] THUKARAM D, KHINCHA H P, VIJAYNARASIMHAH P. Artificial neural network and support vector machineapproach for locating faults in radial distribution systems[ J] . IEEE Transactions on Power Delivery, 2005, 20(2) : 710-721.
[17] WANG Q, BU S Q, HE Z Y, et al. Toward the prediction level of situation awareness for electric power systemsusing CNN-LSTM network[ J] . IEEE Transactions on Industrial Informatics, 2021, 17(10) : 6951-6961.
[18] 屈丹, 杨绪魁, 闫红刚, 等. 低资源少样本连续语音识别最新进展 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023,44(4) : 1-9.
QU D, YANG X K, YAN H G, et al. Overview of recentprogress in low-resource few-shot continuous speech recognition[ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, 44(4) : 1-9.
[19] 成科扬, 荣兰, 蒋森林, 等. 基于深度学习的遥感图像超分辨率重建方法综述[ J] . 郑州大学学报( 工学版) , 2022, 43(5) : 8-16.
CHENG K Y, RONG L, JIANG S L, et al. Overview ofmethods for remote sensing image super-resolution reconstruction based on deep learning [ J] . Journal of Zhengzhou University (Engineering Science) , 2022, 43(5) : 8-16.
Similar References:
Memo

-

Last Update: 2024-09-29
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)