ZHU J C, YANG Z L, GUO Y J, et al. Deep learning applications in power system load forecasting: a survey [J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(5): 13-22.
[2]SUO Q L, ZHONG W D, XUN G X, et al. GLIMA: global and local time series imputation with multi-directional attention learning[C]∥2020 IEEE International Conference on Big Data (Big Data). Piscataway: IEEE, 2020: 798-807.
[3]LIN W C, TSAI C F. Missing value imputation: a review and analysis of the literature (2006—2017)[J]. Artificial Intelligence Review, 2020, 53(2): 1487-1509.
[4]MALARVIZHI M R. K-NN classifier performs better than K-means clustering in missing value imputation[J]. IOSR Journal of Computer Engineering, 2012, 6(5): 12-15.
[5]SMOLA A J, VISHWANATHAN S V N, HOFMANN T. Kernel methods for missing variables[J]. Society for Artificial Intelligence and Statistics, 2005: 325-332.
[6]徐岩, 张晓, 周兴华, 等. 基于Prophet-LightGBM的台区短期负荷预测方法[J]. 华北电力大学学报(自然科学版), 2024,51(6):13-19.
XU Y, ZHANG X, ZHOU X H, et al. The short-term load forecasting method of transformer based on ProphetLightGBM[J]. Journal of North China Electric Power University (Natural Science Edition), 2024,51(6):13-19.
[7]张颖超, 成金杰, 邓华, 等. 基于相似日和特征提取的短期风电功率预测[J]. 郑州大学学报(工学版), 2020, 41(5): 44-49.
ZHANG Y C, CHENG J J, DENG H, et al. Short-term wind power prediction based on similar day and feature extraction[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 44-49.
[8]CAO W, WANG D, LI J, et al. BRITS: bidirectional recurrent imputation for time series[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. NewYork: ACM, 2018: 6776-6786.
[9]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
[10] DU W J, CÔTÉ D, LIU Y. SAITS: self-attention-based imputation for time series[J]. Expert Systems with Applications, 2023, 219: 119619.
[11]周远翔, 林孟龙, 陈健宁, 等. 基于自注意力生成对抗网络的电力设备在线监测缺失数据填补[J]. 高电压技术, 2023, 49(5): 1795-1809.
ZHOU Y X, LIN M L, CHEN J N, et al. Missing data imputation for online monitoring of power equipment based on self-attention generative adversarial networks[J]. High Voltage Engineering, 2023, 49(5): 1795-1809.
[12] JÄGER S, ALLHORN A, BIEßMANN F. A benchmark for data imputation methods[J]. Frontiers in Big Data, 2021, 4: 693674.
[13] AHN H, SUN K, PIO KIM K. Comparison of missing data imputation methods in time series forecasting[J]. Computers, Materials & Continua, 2022, 70 (1): 767-779.
[14]马思远, 焦佳辉, 任晟岐, 等. 基于注意力机制的城市多元空气质量数据缺失值填充[J]. 计算机工程与科学, 2023, 45(8): 1354-1364.
MA S Y, JIAO J H, REN S Q, et al. Missing value filling for multi-variable urban air quality data based on attention mechanism[J]. Computer Engineering & Science, 2023, 45(8): 1354-1364.
[15] HAN K, WANG Y H, CHEN H T, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (1): 87-110.
[16] TRINDADE A. Electricity load diagrams 2011—2014 data set[EB/OL]. (2015-12-03)[2024-08-05]. https: ∥archive. ics.uci. edu/ml/datasets/Electricity Load Diagrams20112014.
[17] Microsoft. Neural network intellgence[EB/OL]. (201706-01) [2024-08-05]. https:∥github. com/ microsoft/nni.
[18] BERGSTRA J, BENGIO Y. Random search for hyper-parameter optimization[J]. Journal of Machine Learning Research, 2012, 13: 281-305.
[19] YOON J, ZAME W R, VAN DER SCHAAR M. Estimating missing data in temporal data streams using multi-directional recurrent neural networks[J]. IEEE Transactions on Biomedical Engineering, 2019, 66 (5): 1477-1490.