STATISTICS

Viewed129

Downloads81

Self-supervised Remote Sensing Image Retrieval Based on Cross-quantization and Sample Correction
[1]PAN Lili,QU Dongliang,YIN Jingjing,et al.Self-supervised Remote Sensing Image Retrieval Based on Cross-quantization and Sample Correction[J].Journal of Zhengzhou University (Engineering Science),2025,46(02):60-66.[doi:10.13705/j.issn.1671-6833.2024.06.007]
Copy
References:
[1]张艺琨, 唐雁, 陈强. 基于多特征融合的三维模型检索[J]. 郑州大学学报(工学版), 2019, 40(1): 1-6. 
ZHANG Y K, TANG Y, CHEN Q. 3D model retrieval method based on multiple feature fusion[J]. Journal of Zhengzhou University (Engineering Science), 2019, 40 (1): 1-6. 
[2]冯孝鑫, 王子健, 吴奇. 基于三元采样图卷积网络的半监督遥感图像检索[J]. 电子与信息学报, 2023, 45 (2): 644-653. 
FENG X X, WANG Z J, WU Q. Semi-supervised learning remote sensing image retrieval method based on triplet sampling graph convolutional network[J]. Journal of Electronics & Information Technology, 2023, 45(2): 644653. 
[3]JING W P, XU Z K, LI L H, et al. Deep unsupervised weighted Hashing for remote sensing image retrieval[J]. Journal of Database Management, 2022, 33(2): 1-19. 
[4]FENG C, PATRAS I. Adaptive soft contrastive learning [C]∥The 26th International Conference on Pattern Recognition (ICPR). Piscataway: IEEE, 2022: 27212727. 
[5]CHUANG C Y, ROBINSON J, YEN-CHEN L, et al. Debiased contrastive learning[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 8765-8775. 
[6]AI L F, TAO Y, CHENG H J, et al. Accumulative quantization for approximate nearest neighbor search[J]. Computational Intelligence and Neuroscience, 2022, 2022: 4364252. 
[7]SUN Y X, YE Y M, LI X T, et al. Unsupervised deep Hashing through learning soft pseudo label for remote sensing image retrieval[J]. Knowledge-Based Systems, 2022, 239: 107807. 
[8]CHEN B, FENG Y, DAI T, et al. Adversarial examples generation for deep product quantization networks on image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 1388-1404. 
[9]ZHOU H Y, QIN Q B, HOU J K, et al. Deep global semantic structure-preserving Hashing via corrective triplet loss for remote sensing image retrieval[J]. Expert Systems with Applications, 2024, 238: 122105. 
[10] LIANG Y, ZHANG S L, LI K L, et al. Unleashing the full potential of product quantization for large-scale image retrieval[EB/OL]. (2023-10-09)[2024-08-22]. https:∥paperswithcode. com/paper/unleashing-the-fullpotential-of-product.
[11] TANG J Y, WANG D L, TONG X C, et al. Learning from self-supervised features for Hashing-based remote sensing image retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 2501705. 
[12] HUYNH T, KORNBLITH S, WALTER M R, et al. Boosting contrastive self-supervised learning with false negative cancellation[C]∥2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). Piscataway: IEEE, 2022: 986-996. 
[13] DWIBEDI D, AYTAR Y, TOMPSON J, et al. With a little help from my friends: nearest-neighbor contrastive learning of visual representations[EB/OL].(2021-1007)[2024-08-22]. http:∥arxiv.org/abs/2104.14548. 
[14]何悦, 陈广胜, 景维鹏, 等. 基于深度多相似性哈希方法的遥感图像检索[J]. 计算机工程, 2023, 49 (2): 206-212.
HE Y, CHEN G S, JING W P, et al. Remote sensing image retrieval based on deep multi-similarity Hashing method[J]. Computer Engineering, 2023, 49(2): 206212. 
[15]吴刚, 葛芸, 储珺, 等. 面向遥感图像检索的级联池化自注意力研究[J]. 光电工程, 2022, 49 (12): 220029. 
WU G, GE Y, CHU J, et al. Cascade pooling self-attention research for remote sensing image retrieval[J]. Opto-Electronic Engineering, 2022, 49(12): 220029. 
[16] DEMIR B, BRUZZONE L. Hashing-based scalable remote sensing image search and retrieval in large archives [J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 892-904. 
[17] FERNANDEZ-BELTRAN R, DEMIR B, PLA F, et al. Unsupervised remote sensing image retrieval using probabilistic latent semantic Hashing[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 18(2): 256-260. 
[18] LI P, REN P. Partial randomness hashing for large-scale remote sensing image retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(3): 464-468. 
[19] SLANEY M, CASEY M. Locality-sensitive Hashing for finding nearest neighbors lecture notes[J]. IEEE Signal Processing Magazine, 2008, 25(2): 128-131. 
[20] GONG Y C, LAZEBNIK S, GORDO A, et al. Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(12): 2916-2929. 
[21] SHEN Y M, QIN J, CHEN J X, et al. Auto-encoding twin-bottleneck Hashing[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020: 2815-2824.
Similar References:
Memo

-

Last Update: 2025-03-13
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)