[2] NAIK J, DASH S, DASH P K, et al. Short term windpower forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neuralnetwork[ J] . Renewable Energy, 2018, 118: 180-212.
[3] SHARIFIAN A, GHADI M J, GHAVIDEL S, et al. Anew method based on type-2 fuzzy neural network for accurate wind power forecasting under uncertain data [ J] .Renewable Energy, 2018, 120: 220-230.
[4] ZHANG F, LI P C, GAO L, et al. Application of autoregressive dynamic adaptive ( ARDA) model in real-timewind power forecasting [ J ] . Renewable Energy, 2021,169: 129-143.
[5] 张颖超, 成金杰, 邓华, 等. 基于相似日和特征提取的短期风电功率预测[ J] . 郑州大学学报(工学版) ,2020, 41(5) : 44-49.
ZHANG Y C, CHENG J J, DENG H, et al. Short-termwind power prediction based on similar day and featureextraction [ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(5) : 44-49.
[6] 朱俊丞, 杨之乐, 郭媛君, 等. 深度学习在电力负荷预测中的 应 用 综 述 [ J] . 郑 州大学学报 (工学版) ,2019, 40(5) : 13-22.
ZHU J C, YANG Z L, GUO Y J, et al. Deep learningapplications in power system load forecasting: a survey[ J] . Journal of Zhengzhou University ( Engineering Science) , 2019, 40(5) : 13-22.
[7] ZHANG J H, YAN J, INFIELD D, et al. Short-term forecasting and uncertainty analysis of wind turbine powerbased on long short-term memory network and Gaussianmixture model[J]. Applied Energy, 2019, 241: 229-244.
[8] KISVARI A, LIN Z, LIU X L. Wind power forecasting:adata-driven method along with gated recurrent neural network[ J] . Renewable Energy, 2021, 163: 1895-1909.
[9] ZHANG Y G, PAN G F, CHEN B, et al. Short-termwind speed prediction model based on GA-ANN improvedby VMD [ J ] . Renewable Energy, 2020, 156: 1373 -1388.
[10] FU W L, FANG P, WANG K, et al. Multi-step aheadshort-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennaesearch algorithm-based synchronous optimization and Volterra series model [ J] . Renewable Energy, 2021, 179:1122-1139.
[11] NAIK J, DASH P K, DHAR S. A multi-objective windspeed and wind power prediction interval forecasting usingvariational modes decomposition based multi-kernel robustridge regression[J]. Renewable Energy, 2019, 136: 701-731.
[12] LIU H, MI X W, LI Y F, et al. Smart wind speed deeplearning based multi-step forecasting model using singularspectrum analysis, convolutional gated recurrent unit network and support vector regression[ J] . Renewable Energy, 2019, 143: 842-854.
[13] 李静茹, 姚方. 引入注意力机制的 CNN 和 LSTM 复合风电预测模型[ J] . 电气自动化, 2022, 44(6) : 4-6.
LI J R, YAO F. Integrated CNN and LSTM wind powerprediction modelwith the introduction of attention mechanism[ J] . Electrical Automation, 2022, 44(6) : 4-6.
[14] BENTSEN L Ø, WARAKAGODA N D, STENBRO R, etal. Spatio-temporal wind speed forecasting using graphnetworks and novel transformer architectures[ J] . AppliedEnergy, 2023, 333: 120565.
[15] 黄秋娟. 基于注意力机制的风电功率预测[D] . 重庆:重庆大学, 2022.
HUANG Q J. Wind power prediction based on attentionmechanism[D]. Chongqing: Chongqing University, 2022.
[16] 吴珺玥, 赵二刚, 郭增良, 等. 基于 Spearman 系数和TCN 的光伏出力超短期多步预测 [ J] . 太阳能学报,2023, 44(9) : 180-186.
WU J Y, ZHAO E G, GUO Z L, et al. Ultra-short-termphotovoltaic power multi-step prediction based onSpearman coefficient and TCN[ J] . Acta Energiae SolarisSinica, 2023, 44(9) : 180-186.
[17] 余光正, 陆柳, 汤波, 等. 考虑转折性天气的海上风电功率超短期分段预测方法研究[ J] . 中国电机工程学报, 2022, 42(13) : 4859-4871.
YU G Z, LU L, TANG B, et al. Research on ultra-shortterm subsection forecasting method of offshore wind powerconsidering transitional weather [ J] . Proceedings of theCSEE, 2022, 42(13) : 4859-4871.
[18] 刘洋. 基于 NWP 数据优化下的风电场功率预测算法研究[D] . 太原: 太原科技大学, 2021.
LIU Y. Wind farm power prediction algorithm based onNWP data optimization[ D] . Taiyuan: Taiyuan Universityof Science and Technology, 2021.
[19] 王丽婕, 冬雷, 高爽. 基于多位置 NWP 与主成分分析的风电功率短期预测 [ J] . 电工技术学报, 2015, 30(5) : 79-84.
WANG L J, DONG L, GAO S. Wind power short-termprediction based on principal component analysis of NWPof multiple locations [ J] . Transactions of China Electrotechnical Society, 2015, 30(5) : 79-84.
[20] 赵晓阳. 基于神经网络的空气质量预测模型构建研究[D] . 包头: 内蒙古科技大学, 2020.
ZHAO X Y. Research on construction of air quality forecast model based on neural network [ D] . Baotou: InnerMongolia University of Science & Technology, 2020.
[21] 黄峰, 向 书 琛, 王 睿, 等. 一 种 基 于 VMD-PSO-SVM的短期风 电 功 率 预 测 算 法 [ J] . 湖 南 工 程 学 院 学 报(自然科学版) , 2022, 32(2) : 7-12.
HUANG F, XIANG S C, WANG R, et al. A design ofPSO-SVM short-term wind power forecasting algorithmbased on VMD [ J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2022, 32(2): 7-12.
[22] 刘洪波, 盖雪扬, 孙黎, 等. 计及数据降维和数据清洗的超短期风电功率预测[ J] . 东北电力大学学报,2023, 43(4) : 1-9.
LIU H B, GAI X Y, SUN L, et al. Ultra-short-term windpower prediction considering data reduction and datacleaning[ J] . Journal of Northeast Electric Power University, 2023, 43(4) : 1-9.
[23] 黄志祥, 周莉. 基于 VMD-LSTM 的短期电力负荷预测研究[ J] . 洛阳 理 工 学 院 学 报 ( 自 然 科 学 版) , 2022,32(3) : 76-80, 96.
HUANG Z X, ZHOU L. Research on short term loadforecasting based on VMD-LSTM[ J] . Journal of LuoyangInstitute of Science and Technology (Natural Science Edition) , 2022, 32(3) : 76-80, 96.
[24] QIAN Z, PEI Y, ZAREIPOUR H, et al. A review anddiscussion of decomposition-based hybrid models for windenergy forecasting applications [ J ] . Applied Energy,2019, 235: 939-953.
[25] HOURAN M A, BUKHARI S M S, ZAFAR M H, et al.COA-CNN-LSTM: coati optimization algorithm-based hybrid deep learning model for PV / wind power forecastingin smart grid applications [ J ] . Applied Energy, 2023,349: 121638