STATISTICS

Viewed191

Downloads172

Optimization of Wall Thickness Monitoring Technology for High Temperature Pipelines Based on Ultrasonic Guided Waves
[1]ZHOU Juncen,GAN Fangji,WANG Siyu,et al.Optimization of Wall Thickness Monitoring Technology for High Temperature Pipelines Based on Ultrasonic Guided Waves[J].Journal of Zhengzhou University (Engineering Science),2024,45(04):140-146.[doi:10.13705/ j.issn.1671-6833.2024.04.006]
Copy
References:
[1] KIM W S, LOTSBERG I. Fatigue test data for welded connections in ship-shaped structures[J]. Journal of Off shore Mechanics and Arctic Engineering, 2005, 127(4): 359-365. 
[2] CEGLA F B, CAWLEY P, ALLIN J, et al. High-tem perature (>500 ℃) wall thickness monitoring using dry coupled ultrasonic waveguide transducers [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequen cy Control, 2011, 58(1): 156-167. 
[3] BHADWAL N, TORABI MILANI M, COYLE T, et al. Dry coupling of ultrasonic transducer components for high tem perature applications[J]. Sensors, 2019, 19(24): 5383. 
[4] 王刚, 李法新. 基于水平剪切超声导波的高温管道壁 厚在线监测[J]. 无损检测, 2019, 41(9): 1-6, 15. 
WANG G, LI F X. On-line monitoring of high tempera ture pipeline wall thickness based on the shear horizontal ultrasonic guided wave[J]. Nondestructive Testing, 2019, 41(9): 1-6, 15. 
[5] LIAO Z Y, ZHANG X, LIU T Y, et al. Characteristics of high-temperature equipment monitoring using dry-cou pled ultrasonic waveguide transducers[J]. Ultrasonics, 2020, 108: 106236. 
[6] 白雪皎, 祝海江. 高温管道超声波测厚方法影响因素 仿真研究[J]. 计量科学与技术, 2022, 66(2): 55-60. 
BAI X J, ZHU H J. Simulation-based study on factors af fecting ultrasonic thickness measurements of high temper ature pipelines[J]. Metrology Science and Technology, 2022, 66(2): 55-60. 
[7] 王翥, 刘春龙, 罗清华. 超声波传感器特性分析与测 试方法的研究[J]. 郑州大学学报(工学版), 2020, 41(2): 13-18. 
WANG Z, LIU C L, LUO Q H. Research on ultrasonic sensors characteristics and testing method[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41 (2): 13-18. 
[8] 魏建新, 王椿镛. 横波测试技术的实验室研究[J]. 石油地球物理勘探, 2003, 38(6): 630-635, 708. 
WEI J X, WANG C Y. Study of S-wave test and meas urement technique in laboratory[J]. Oil Geophysical Prospecting, 2003, 38(6): 630-635, 708. 
[9] 郭田雨, 严荣国, 方旭晨, 等. 基于希尔伯特变换和 自适应阈值的R波检测算法[J]. 计算机与现代化, 2022(2): 114-119. 
GUO T Y, YAN R G, FANG X C, et al. Detection of R wave based on Hilbert transform and adaptive threshold [J]. Computer and Modernization, 2022(2): 114-119. 
[10]沙云东, 陈兴武, 栾孝驰, 等. 基于小波包分解-峭度 值指标-希尔伯特包络解调融合方法处理声发射信号 的滚动轴承故障诊断[J]. 科学技术与工程, 2023, 23 (21): 9315-9323. 
SHA Y D, CHEN X W, LUAN X C, et al. Fault diagno sis of rolling bearing based on acoustic emission signal a nalysis by WPD-KI-HED combination method[J]. Sci ence Technology and Engineering, 2023, 23(21): 9315-9323. 
[11]虞雪芬, 叶凌伟, 夏立. 电磁超声检测中高温对横波 声速的影响[J]. 轻工机械, 2015, 33(4): 54-56. 
YU X F, YE L W, XIA L. Influence of high temperature on shear wave velocity of EMAT testing[J]. Light Indus try Machinery, 2015, 33(4): 54-56. 
[12]刘彤, 刘敏珊. 金属材料弹性常数与温度关系的理论 解析[J]. 机械工程材料, 2014, 38(3): 85-89, 95. 
LIU T, LIU M S. Theoretical analysis of the relationship between elastic constants of metals and temperatures[J]. Materials for Mechanical Engineering, 2014, 38(3): 85-89, 95. 
[13]徐志东, 范子亮. 金属材料的弹性模量随温度变化规 律的唯象解释[J]. 西南交通大学学报, 1993, 28 (2): 87-92. 
XU Z D, FAN Z L. A phenomenological explanation of the variation of elastic modulus with temperature for me tallic materials[J]. Journal of Southwest Jiaotong Univer sity, 1993, 28(2): 87-92.
Similar References:
Memo

-

Last Update: 2024-06-14
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)