STATISTICS

Viewed399

Downloads347

Image Super-resolution Reconstruction Network Based on Double FeatureExtraction and Attention Mechanism
[1]BO Yangyu,WU Yongliang,WANG Xuejun.Image Super-resolution Reconstruction Network Based on Double FeatureExtraction and Attention Mechanism[J].Journal of Zhengzhou University (Engineering Science),2024,45(06):48-55.[doi:10.13705/j.issn.1671-6833.2024.03.009]
Copy
References:
[1] 成科扬, 荣兰, 蒋森林, 等. 基于深度学习的遥感图像超分辨率重建方法综述[ J] . 郑州大学学报( 工学版) , 2022, 43(5) : 8-16.
CHENG K Y, RONG L, JIANG S L, et al. Overview ofmethods for remote sensing image super-resolution reconstruction based on deep learning[J]. Journal of ZhengzhouUniversity (Engineering Science), 2022, 43(5): 8-16.
[2] DONG C, LOY C C, HE K M, et al. Learning a deepconvolutional network for image super-resolution[C]∥European Conference on Computer Vision. Cham: Springer,2014: 184-199.
[3] DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[ C]∥European Conference on Computer Vision. Cham: Springer,2016: 391-407.
[4] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[ C]∥2016IEEE Conference on Computer Vision and Pattern Recognition (CVPR) . Piscataway:IEEE, 2016: 1646-1654.
[5] LIM B, SON S, KIM H, et al. Enhanced deep residualnetworks for single image super-resolution [ C ] ∥2017IEEE Conference on Computer Vision and Pattern Recognition Workshops ( CVPRW) . Piscataway:IEEE, 2017:1132-1140.
[6] LAI W S, HUANG J B, AHUJA N, et al. Deep Laplacian pyramid networks for fast and accurate super-resolution[C]∥2017 IEEE Conference on Computer Vision andPattern Recognition (CVPR) . Piscataway:IEEE, 2017:5835-5843.
[7] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]∥2016 IEEEConference on Computer Vision and Pattern Recognition(CVPR) . Piscataway: IEEE, 2016: 1637-1645.
[8] TAI Y, YANG J, LIU X M. Image super-resolution viadeep recursive residual network[ C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR) . Piscataway:IEEE, 2017: 2790-2798.
[9] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]∥European Conference on Computer Vision. Cham:Springer, 2018: 294-310.
[10] AHN N, KANG B, SOHN K A. Fast, accurate, andlightweight super-resolution with cascading residual network[C]∥Computer Vision—ECCV 2018: 15th European Conference. New York:ACM, 2018: 256-272.
[11] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]∥2018 IEEE / CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018:7132-7141.
[12] WU B C, WAN A, YUE X Y, et al. Shift: a zero FLOP,zero parameter alternative to spatial convolutions[C]∥2018IEEE / CVF Conference on Computer Vision and PatternRecognition. Piscataway: IEEE, 2018: 9127-9135.
[13] TONG T, LI G, LIU X J, et al. Image super-resolutionusing dense skip connections [ C] ∥2017 IEEE International Conference on Computer Vision ( ICCV) . Piscataway:IEEE, 2017: 4809-4817.
[14] YUAN Y, LIU S Y, ZHANG J W, et al. Unsupervisedimage super-resolution using cycle-in-cycle generative adversarial networks [ C]∥2018 IEEE / CVF Conference onComputer Vision and Pattern Recognition Workshops(CVPRW) . Piscataway:IEEE, 2018: 814-822.
[15] WANG Z, BOVIK A C, SHEIKH H R, et al. Imagequality assessment: from error visibility to structural similarity [ J ] . IEEE Transactions on Image Processing: APublication of the IEEE Signal Processing Society, 2004,13(4) : 600-612.
[16] YU F, KOLTUN V. Multi-scale context aggregation bydilated convolutions[EB / OL] . ( 2015 - 11 - 23) [ 2023 -06-14] . https:∥arxiv. org / abs/ 1511. 07122.
[17] LI W B, ZHOU K, QI L, et al. LAPAR: linearly-assembled pixel-adaptive regression network for single image super-resolution and beyond [ EB / OL ] . ( 2021 - 05 - 21 )[2023-06-14] . https:∥arxiv. org / abs/ 2105. 10422.
[18] TAI Y, YANG J, LIU X M, et al. MemNet: a persistentmemory network for image restoration[C]∥2017 IEEE International Conference on Computer Vision ( ICCV) . Piscataway:IEEE, 2017: 4549-4557.
[19] WANG C F, LI Z, SHI J. Lightweight image super-resolution with adaptive weighted learning network[EB / OL] .(2019- 04 - 04 ) [ 2023 - 06 - 14 ] . https:∥arxiv. org /abs/ 1904. 02358.
[20] HUI Z, WANG X M, GAO X B. Fast and accurate singleimage super-resolution via information distillation network[C]∥2018 IEEE / CVF Conference on Computer Vision andPattern Recognition. Piscataway:IEEE, 2018: 723-731.
[21] HUI Z, GAO X B, YANG Y C, et al. Lightweight imagesuper-resolution with information multi-distillation network[C]∥Proceedings of the 27th ACM International Conferenceon Multimedia. New York: ACM, 2019: 2024-2032.
[22] ZHU F Y, ZHAO Q J. Efficient single image super-resolution via hybrid residual feature learning with compactback-projection network [ C] ∥2019 IEEE / CVF International Conference on Computer Vision Workshop ( ICCVW) . Piscataway:IEEE, 2019: 2453-2460.
[23] LIU J, TANG J, WU G S. Residual feature distillationnetwork for lightweight image super-resolution[C]∥European Conference on Computer Vision. Cham: Springer,2020: 41-55.
[24] KONG F Y, LI M X, LIU S W, et al. Residual local feature network for efficient super-resolution [ C ] ∥ 2022IEEE / CVF Conference on Computer Vision and PatternRecognition Workshops ( CVPRW) . Piscataway: IEEE,2022: 765-775.
Similar References:
Memo

-

Last Update: 2024-09-29
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)