STATISTICS

Viewed279

Downloads360

Analysis of Enhanced Boiling Heat Transfer Mechanism Using Low Thermal Conductive Material Plate Based on LBM
[1]CAO Hailiang,LIU Hongbei,ZHANG Ziyang,et al.Analysis of Enhanced Boiling Heat Transfer Mechanism Using Low Thermal Conductive Material Plate Based on LBM[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):103-110.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 004]
Copy
References:
[1] 郭茶秀, 魏金宇. 电池排布方式对21700 锂电池相变 热管理系统的影响[ J]. 郑州大学学报( 工学版), 2023, 44(2): 91-97.
GUO C X, WEI J Y. Influence of different arrangement on phase change thermal management system of 21700 lithium battery[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(2): 91-97.
[2] 郑晓欢, 纪献兵, 王野, 等. 超亲/ 疏水性表面池沸腾 传热研究[J]. 化工进展, 2016, 35(12): 3793-3798.
ZHENG X H, JI X B, WANG Y, et al. Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[ J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3793-3798.
[3] 曹海亮, 张红飞, 左潜龙, 等. 梯形微槽道表面池沸 腾换热性能研究[J]. 化工学报, 2021, 72(8): 4111- 4120.
CAO H L, ZHANG H F, ZUO Q L, et al. Study on pool boiling heat transfer performance of trapezoidal microchannel surface [ J]. CIESC Journal, 2021, 72 ( 8): 4111-4120.
[4] MUKHERJEE A, DHIR V K. Study of lateral merger of vapor bubbles during nucleate pool boiling[J]. Journal of Heat Transfer, 2004, 126(6): 1023-1039.
[5] HUANG Y, TIAN Y, YE W, et al. Enhancing pool boiling heat transfer by structured surfaces-a lattice Boltzmann study [ J]. Journal of Applied Fluid Mechanics, 2022, 15(1): 139-151.
[6] YUAN J J, YE X, SHAN Y G. Two-dimensional lattice Boltzmann method to study the influence of nucleation distance on heat flux during bubble coalescence[J]. International Journal of Thermal Sciences, 2022, 172: 107353.
[7] 徐刚, 梁帅, 刘武发, 等. 流动聚焦型微流控芯片微 通道结构优化[J]. 郑州大学学报(工学版), 2020, 41(4): 87-91.
XU G, LIANG S, LIU W F, et al. Optimization of micro- channel structure of flow focusing microfluidic chip [J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 87-91.
[8] ZHANG L, WANG T, KIM S, et al. The effects of wall superheat and surface wettability on nucleation site interactions during boiling[ J]. International Journal of Heat and Mass Transfer, 2020, 146: 118820.
[9] MAGRINI U, NANNEI E. On the influence of the thickness and thermal properties of heating walls on the heat transfer coefficients in nucleate pool boiling[J]. Journal of Heat Transfer, 1975, 97(2): 173-178.
[10] RAHMAN M M, POLLACK J, MCCARTHY M. Increasing boiling heat transfer using low conductivity materials [J]. Scientific Reports, 2015, 5: 13145.
[11] 孟璐璐, 谢添玺, 陈志豪, 等. 材料交错分布型传热 板表面异态干涉沸腾传热特性研究[J]. 化工学报, 2021, 72(9): 4564-4572.
MENG LL, XIE TX, CHEN ZH, et al. Study of different- mode-interacting boiling heat transfer characteristics on the heating plate with material cross arrangement[J]. CIESC Journal, 2021, 72(9): 4564-4572.
[12] UTAKA Y, XIE T X, CHEN Z H, et al. Critical heat flux enhancement in narrow gaps via different-mode-interacting boiling with nonuniform thermal conductance inside heat transfer plate[J]. International Journal of Heat and Mass Transfer, 2019, 133: 702-711.
[13] BHATNAGAR P L, GROSS E P, KROOK M K. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems [J]. Physical Review, 1954, 94(3): 511-525.
[14] KUPERSHTOKH A L, MEDVEDEV D A, KARPOV D I. On equations of state in a lattice Boltzmann method [J]. Computers & Mathematics with Applications, 2009, 58(5): 965-974.
[15] YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of fluids, 2006, 18(4): 042101.
[16] 曾建邦, 李隆键, 廖全, 等. 池沸腾中气泡生长过程 的格子Boltzmann 方法模拟[J]. 物理学报, 2011, 60 (6): 520-529.
ZENG J B, LI L J, LIAO Q, et al. Simulation of bubble growth process in pool boiling using lattice Boltzmann method [ J]. Acta PhysicaSinica, 2011, 60 ( 6): 520 -529.
[17] 曹海亮, 安琪, 左潜龙, 等. 一种新的固液共轭沸腾 传热LB 模型[J]. 郑州大学学报(工学版), 2023, 44 (2): 75-81.
CAO H L, AN Q, ZUO Q L, et al. A new LB model for solid-liquid conjugate boiling heat transfer[J]. Journal of Zhengzhou University ( Engineering Science), 2023, 44 (2): 75-81.
[18] GONG S, CHENG P. A lattice Boltzmann method for simulation of liquid-vapor phase-change heat transfer[J]. International Journal of Heat and Mass Transfer, 2012, 55(17/ 18): 4923-4927.
[19] SON G, DHIR V K, RAMANUJAPU N. Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface[ J]. Journal of Heat Transfer, 1999, 121(3): 623-631.
[20] 汪鹏军, 祁影霞, 谢荣建. 气泡生长及脱离过程的格 子玻尔兹曼模拟[ J]. 轻工机械, 2020, 38(5): 32 -38.
WANG P J, QI Y X, XIE R J. Lattice Boltzmann simulation of bubble growth and detachment[J]. Light Industry Machinery, 2020, 38(5): 32-38.
[21] FRITZ W. Maximum volume of vapor bubbles[J]. Physic Zeitschz, 1935, 36: 379-354.
[22] ZOU Q S, HE X Y. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model [ J]. Physics of Fluids, 1997, 9(6): 1591-1598.
[23] GONG S, CHENG P. Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part Ⅱ: bubble interactions above multi-cavities[J]. International Journal of Heat and Mass Transfer, 2016, 100: 938-948.

Similar References:
Memo

-

Last Update: 2024-04-29
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)