STATISTICS

Viewed26

Downloads16

Automated Penetration Testing Method Based on Deep Reinforcement Learning NoisyNet-A3C Algorithm
[1]DONG Weiyu,LIU Pengkun,LIU Chunling,et al.Automated Penetration Testing Method Based on Deep Reinforcement Learning NoisyNet-A3C Algorithm[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):60-68.[doi:10.13705/j.issn.1671-6833.2024.02.011]
Copy
References:
[1]ZHOU T Y,ZANG Y C,ZHU J H, et al. NIG-AP: a new method for automated penetration testing[J]. Frontiers of Information Technology & Electronic Engineering,2019, 20(9):1277-1288. 
[2]黄万伟, 郑向雨, 张超钦,等. 基于深度强化学习的智能路由技术研究[J]. 郑州大学学报(工学版),2023, 44(1):44-51. 
HUANG W W, ZHENG X Y, ZHANG C Q, et al. Research on intelligent routing technology based on deep reinforcement learning[J]. Journal of Zhengzhou university (engineering science),2023,44(1):44-51. 
[3]KRÖSE B J A. Learning from delayed rewards[J]. Robotics and Autonomous Systems, 1995, 15(4): 233-235. 
[4]SRINIVASAN S, LANCTOT M, ZAMBALDI V, et al. Actor-critic policy optimization in partially observable multiagent environments[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems.NewYork:ACM, 2018: 3426-3439. 
[5]KANG Q M, ZHOU H Z, KANG Y F. An asynchronous advantage actor-critic reinforcement learning method for stock selection and portfolio management[C]∥Proceedings of the 2nd International Conference on Big Data Research. NewYork:ACM, 2018: 141-145. 
[6]GHANEM M C, CHEN T M. Reinforcement learning for intelligent penetration testing[C]∥2018 Second World Conference on Smart Trends in Systems, Security and Sustainability. Piscataway:IEEE, 2018: 185-192. 
[7]周仕承, 刘京菊, 钟晓峰, 等. 基于深度强化学习的智能化渗透测试路径发现[J]. 计算机科学, 2021, 48 (7): 40-46. 
ZHOU S C, LIU J J, ZHONG X F, et al. Intelligent penetration testing path discovery based on deep reinforcement learning[J]. Computer Science, 2021, 48 (7): 40-46. 
[8]HU Z G, BEURAN R, TAN Y S. Automated penetration testing using deep reinforcement learning[C]∥2020 IEEE European Symposium on Security and Privacy Workshops. Piscataway:IEEE, 2020: 2-10. 
[9]CHEN J Y, HU S L, ZHENG H B, et al. GAIL-PT: a generic intelligent penetration testing framework with generative adversarial imitation learning[EB/OL]. (202204-05)[2023-10-11].https:∥doi.org/10.48550/arXiv.2204.01975. 
[10] SCHWARTZ J, KURNIAWATI H, EL-MAHASSNI E. POMDP+information-decay: incorporating defender′s behaviour in autonomous penetration testing[J]. Proceedings of the International Conference on Automated Planning and Scheduling, 2020, 30: 235-243. 
[11] MNIH V, KAVUKCUOGLU K, SILVER D, et al. Human-level control through deep reinforcement learning [J]. Nature, 2015, 518(7540): 529-533. 
[12] ZHOU S C, LIU J J, HOU D D, et al. Autonomous penetration testing based on improved deep Q-network[J]. Applied Sciences, 2021, 11(19): 8823. 
[13] NGUYEN H, TEERAKANOK S, INOMATA A, et al. The proposal of double agent architecture using actor-critic algorithm for penetration testing[C]∥Proceedings of the 7th International Conference on Information Systems Security and Privacy. San Francisco:Science and Technology Publications, 2021: 440-449. 
[14] JIANG Z Y, ZHANG T J, KIRK R, et al. Graph backup: data efficient backup exploiting Markovian transitions [EB/OL]. (2022-05-31)[2023-10-11]. https:∥ doi.org/10.48550/arXiv.2205.15824. 
[15]王丙琛, 司怀伟, 谭国真. 基于深度强化学习的自动驾驶车控制算法研究[J]. 郑州大学学报(工学版), 2020, 41(4): 41-45, 80. 
WANG B C, SI H W, TAN G Z. Research on autopilot control algorithm based on deep reinforcement learning [J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 41-45, 80. 
[16] SUTTON R S, MCALLESTER D, SINGH S, et al. Policy gradient methods for reinforcement learning with function approximation[C]∥Proceedings of the 12th International Conference on Neural Information Processing Systems. NewYork:ACM, 1999: 1057-1063. 
[17] YE D H, CHEN G B, ZHANG W, et al. Towards playing full MOBA games with deep reinforcement learning [C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. NewYork:ACM, 2020: 621-632. 
[18] SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of go with deep neural networks and tree search[J]. Nature, 2016, 529(7587): 484-489.
Similar References:
Memo

-

Last Update: 2025-09-19
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)