STATISTICS

Viewed1002

Downloads928

Influence Analysis of the Bypass Structure on Entrainment Ratio of a Subcritical Ejector
[1]LIU Huadong,JIN Zhaoyang,WANG Dingbiao,et al.Influence Analysis of the Bypass Structure on Entrainment Ratio of a Subcritical Ejector[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):48-53.[doi:10.13705/j.issn.1671-6833.20223.02.008]
Copy
References:
[1] KEENAN J H, NEUMANN E P. A simple air ejector [ J] . Journal of Applied Mechanics, 1942, 9(2) : A75- A81.
 [2] MUNDAY J T, BAGSTER D F. A new ejector theory applied to steam jet refrigeration [ J ] . Industrial & Engineering Chemistry Process Design and Development, 1977, 16(4) : 442-449. 
[3] HUANG B J, CHANG J M, WANG C P, et al. A 1-D analysis of ejector performance [ J] . International Journal of Refrigeration, 1999, 22(5) : 354-364.
 [4] BARTA R B, DHILLON P, BRAUN J E, et al. Design and optimization strategy for ejectors applied in refrigeration cycles [ J ] . Applied Thermal Engineering, 2021, 189: 116682. 
[5] FU W N, LIU Z L, LI Y X, et al. Numerical study for the influences of primary steam nozzle distance and mixing chamber throat diameter on steam ejector performance [ J] . International Journal of Thermal Sciences, 2018, 132: 509-516.
 [6] DONG J M, HU Q Y, YU M Q, et al. Numerical investigation on the influence of mixing chamber length on steam ejector performance [ J ] . Applied Thermal Engineering, 2020, 174: 115204. 
[7] WU Y F, ZHAO H X, ZHANG C Q, et al. Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test[J]. Energy, 2018, 151: 79-93. 
[8] ZHU Y H, WANG Z C, YANG Y P, et al. Flow visualization of supersonic two - phase transcritical flow of CO2 in an ejector of a refrigeration system [ J] . International Journal of Refrigeration, 2017, 74: 354-361.
 [9] LITTLE A B, GARIMELLA S. Shadowgraph visualization of condensing R134a flow through ejectors [ J] . International Journal of Refrigeration, 2016, 68: 118-129. 
[10] 史海路, 刘华东, 魏新利, 等. 喷嘴距对喷射器及双 蒸发压缩 / 喷射制冷系统性能的影响研究[ J] . 高校 化学工程学报, 2019, 33(2) : 321-328. 
SHI H L, LIU H D, WEI X L, et al. Effects of nozzle exit position on the performance of ejector and bi-evaporator compression / ejection refrigeration system [ J ] . Journal of Chemical Engineering of Chinese Universities, 2019, 33(2) : 321-328.
 [11] SRIVEERAKUL T, APHORNRATANA S, CHUNNANOND K. Performance prediction of steam ejector using computational fluid dynamics: part 2, flow structure of a steam ejector influenced by operating pressures and geometries [ J ] . International Journal of Thermal Sciences, 2007, 46(8) : 823-833.
 [12] RUANGTRAKOON N, THONGTIP T, APHORNRATANA S, et al. CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle [ J ] . International Journal of Thermal Sciences, 2013, 63: 133-145.
 [13] CHEN W X, CHEN H Q, SHI C Y, et al. A novel ejector with a bypass to enhance the performance [ J]. Applied Thermal Engineering, 2016, 93: 939-946. 
[14] CHEN W X, HUANG C X, CHONG D T, et al. Numerical assessment of ejector performance enhancement by means of combined adjustable-geometry and bypass methods [ J ] . Applied Thermal Engineering, 2019, 149: 950-959. 
[15] TANG Y Z, LIU Z L, LI Y X, et al. Performance improvement of steam ejectors under designed parameters with auxiliary entrainment and structure optimization for high energy efficiency[ J] . Energy Conversion and Management, 2017, 153: 12-21.
 [16] TANG Y Z, LIU Z L, SHI C, et al. A novel steam ejector with pressure regulation to optimize the entrained flow passage for performance improvement in MED-TVC desalination system[ J] . Energy, 2018, 158: 305-316.
 [17] BODYS J, SMOLKA J, BANASIAK K, et al. Performance improvement of the R744 two-phase ejector with an implemented suction nozzle bypass [ J ] . International Journal of Refrigeration, 2018, 90: 216-228.
 [18] BODYS J, SMOLKA J, PALACZ M, et al. Experimental and numerical study on the R744 ejector with a suction nozzle bypass [ J] . Applied Thermal Engineering, 2021, 194: 117015.
 [19] 魏新利, 王中华, 耿利红, 等. 压缩制冷系统节流损 失及 应 对 方 案 研 究 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2015, 36(3) : 68-72. 
WEI X L, WANG Z H, GENG L H, et al. Study on the throttling losses in CRS and solutions [ J ] . Journal of Zhengzhou University ( Engineering Science) , 2015, 36 (3) : 68-72.
 [20] 耿利红. 双蒸发压缩 / 喷射制冷系统及两相喷射器的 研究[D] . 郑州: 郑州大学, 2017. 
GENG L H. Study on bi-evaporator compression / ejection refrigeration system and two-phase ejector [ D] . Zhengzhou: Zhengzhou University, 2017. 
[21] 孔珑. 流体力学[M] . 北京: 高等教育出版社, 2003. KONG L. Hydromechanics[ M] . Beijing: Higher Education Press, 2003.
 [22] BARTOSIEWICZ Y, AIDOUN Z, MERCADIER Y. Numerical assessment of ejector operation for refrigeration applications based on CFD [ J] . Applied Thermal Engineering, 2006, 26(5 / 6) : 604-612.
Similar References:
Memo

-

Last Update: 2023-10-22
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)