STATISTICS

Viewed3495

Downloads1447

Base Station Network Traffic Prediction Method Based on Wide & Deep Learning
[1]CHEN Haojie,HUANG Jin,ZUO Xingquan,et al.Base Station Network Traffic Prediction Method Based on Wide & Deep Learning[J].Journal of Zhengzhou University (Engineering Science),2022,43(01):7-13.[doi:10.13705/j.issn.1671-6833.2022.01.011]
Copy
References:
[1] 赵一权.无线网络运营数据分析与预测研究[D].北 京: 北京邮电大学,2018.
 [2] 蒋品.基于机器学习的蜂窝网络基站流量分析与预 测研究[D].北京: 北京邮电大学,2019. 
[3] 危彦.蜂窝网络中基于流量预测的节能关键技术研 究[D].杭州: 浙江大学,2012. 
[4] 张佳鑫,张兴,李永竞,等.蜂窝网络中基站关系与 业务关系网络与应用[J]. 中 国 科 学: 信 息 科 学, 2017,47( 5) : 648-663.
 [5] MADAN R,MANGIPUDI P S.Predicting computer network traffic: a time series forecasting approach using DWT,ARIMA and RNN[C]/ /2018 Eleventh International Conference on Contemporary Computing ( IC3) . Piscataway: IEEE,2018: 1-5. 
[6] LU H P,YANG F. Research on network traffic prediction based on long short-term memory neural network[C]/ /2018 IEEE 4th International Conference on Computer and Communications ( ICCC) . Piscataway: IEEE,2018: 1109-1113.
 [7] HUANG C W,CHIANG C T,LI Q H.A study of deep learning networks on mobile traffic forecasting[C]/ / 2017 IEEE 28th Annual International Symposium on Personal,Indoor,and Mobile Radio Communications ( PIMRC) . Piscataway: IEEE,2017: 1-6.
 [8] GUI Y H,WANG D S,GUAN L Y,et al. Optical network traffic prediction based on graph convolutional neural networks[C]/ /2020 Opto-Electronics and Communications Conference ( OECC) . Piscataway: IEEE, 2020: 1-3.
 [9] HOCHENBAUM J,VALLIS O S,KEJARIWAL A. Automatic anomaly detection in the cloud via statistical learning[EB/OL]. ( 2017- 04- 24) [2021- 05- 01]. https: / /arxiv.org /abs/1704. 07706. 
[10] YANG Z Y,ZHANG D Z,TANG J. Predicting PON networking traffic flow based on LSTM neural network with periodic characteristic data[C]/ /2020 IEEE 5th Optoelectronics Global Conference ( OGC ) . Piscataway: IEEE,2020: 39-42. 
[11] LIU H Z,YANG L T,CHEN J J,et al. Multivariate multi-order Markov multi-modal prediction with its applications in network traffic management[J]. IEEE transactions on network and service management, 2019,16( 3) : 828-841. 
[12] HAN Y,JING Y W,LI K,et al. Network traffic prediction using variational mode decomposition and multi-reservoirs echo state network[J]. IEEE access, 2019,7: 138364-138377. 
[13] 骆凯,罗军勇,尹美娟,等.一种基于动态阈值的突 发流量 异 常 检 测 方 法[J]. 信息工程大学学报, 2016,17( 4) : 509-512.
 [14] GHOSH D,VOGT A. Outliers: an evaluation of methodologies[C] / /Proceedings of the Survey Research Methods Section-JSM 2012. Washington DC: ASA, 2012: 3455-3460. 
[15] MIRZARGAR M,WHITAKER R T,KIRBY R M. Curve boxplot: generalization of boxplot for ensembles of curves[J]. IEEE transactions on visualization and computer graphics,2014,20( 12) : 2654-2663. 
[16] CLEVELAND U R B,CLEVELAND U W S,MCRAE U J E,et al.STL: a seasonal-trend decomposition procedure based on loess[J].Journal of official statistics, 1990,6( 1) : 3-73. 
[17] SCHULTE J A. Wavelet analysis for non-stationary, nonlinear time series[J]. Nonlinear processes in geophysics,2016,23( 4) : 257-267. 
[18] RILLING G,FLANDRIN P,GONCALVES P. On empirical mode decomposition and its algorithms[C] / /Proceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing.Piscataway: IEEE, 2003: 8-11. 
[19] CHENG H T,KOC L,HARMSEN J,et al.Wide & deep learning for recommender systems[C]/ /Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM,2016: 7-10.
Similar References:
Memo

-

Last Update: 2022-01-09
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)