STATISTICS

Viewed3083

Downloads2084

Fast Non-dominated Sorting Genetic Algorithm II Based on Hybrid Strategies
[1]ZHANG Maoqing,WANG Lei,CUI Zhihua,et al.Fast Non-dominated Sorting Genetic Algorithm II Based on Hybrid Strategies[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):23-27.[doi:10.13705/j.issn.1671-6833.2020.04.007]
Copy
References:
[1] 崔志华,张茂清,常宇,等.基于平均距离聚类的NSGA-II[J/OL].自动化学报:1-12(2019-04-11)[2019-12-20].https://doi.org/10.16383/j.aas.c180540.
[2] 蒋佩华,华冰,黄宇,等.基于遗传算法的变质量航天器姿态控制方法[J].郑州大学学报(工学版),2019,40(4):1-7.
[3] 龙志伟,肖松毅,王晖,等.基于粒子群算法的水资源需求预测[J].郑州大学学报(工学版),2019,40(4):32-35,47.
[4] DEB K,PRATAP A,AGARWAL S,et al.A fast and elitist multiobjective genetic algorithm:NSGA-II[J].IEEE transactions on evolutionary computation,2002,6(2):182-197.
[5] ZITZLER E,LAUMANNS M,THIELE L.SPEA2:improving the strength pareto evolutionary algorithm[C]//Proceedings of Conferencs on Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems.Barcelona:CIMNE,2001:5-10.
[6] GONG M G,JIAO L C,DU H F,et al.Multiobjective immune algorithm with nondominated neighbor-based selection[J].Evolutionary computation,2008,16(2):225-255.
[7] 陆金芳.改进的NSGAII算法在服装企业生产调度中的应用研究[D].广州:暨南大学,2018.
[8] 黄敏镁,袁际军,曹亮.基于NSGAII的协同产品开发项目自动协商决策[J].运筹与管理,2017,26(3):86-91,99.
[9] 陈刚,付江月.基于NSGAII的应急物流多目标LRP研究[J].软科学,2016,30(4):135-139.
[10] 宋健.多目标遗传算法的改进及其在地下水污染修复管理中的应用[D].南京:南京大学,2017.
[11] 陈辅斌,李忠学,杨喜娟.基于改进NSGA2算法的多目标柔性作业车间调度[J].工业工程,2018,21(2):55-61.
[12] 王祥.基于改进NSGA-Ⅱ算法的应急物资模块化调度问题建模与求解[D].合肥:合肥工业大学,2018.
[13] 汪文文,方玺,何朗,等.NSGA-Ⅱ算法的改进及其在应急管理中的应用[J].计算机工程与应用,2018,54(16):241-247.
[14] YANG S X,LI M Q,LIU X H,et al.A grid-based evolutionary algorithm for many-objective optimization[J].IEEE transactions on evolutionary computation,2013,17(5):721-736.
[15] ZHANG Q F,LI H.MOEA/D:a multiobjective evolutionary algorithm based on decomposition[J].IEEE transactions on evolutionary computation,2007,11(6):712-731.
[16] CORNE D,JERRAM N,KNOWLES J,et al.PESA-II:region-based selection in evolutionary multiobjective optimization[C]//Proceedings of the Genetic and Evolutionary Computation Conference (GECCO′2001).San Francisco:Morgan Kanfmar,2001:283-290.
[17] TIAN Y,ZHANG X Y,CHENG R,et al.A multi-objective evolutionary algorithm based on an enhanced inverted generational distance metric[C]//2016 IEEE Congress on Evolutionary Computation (CEC).Vancouver:IEEE,2016:24-29.
[18] ZITZLER E,DEB K,THIELE L.Comparison of multiobjective evolutionary algorithms:empirical results[J].Evolutionary computation,2000,8(2):173-195.
[19] COELLO C A C,CORTES N C.Solving multiobjective optimization problems using an artificial immune system[J].Genetic programming and evolvable machines,2005,6(2):163-190.
Similar References:
Memo

-

Last Update: 2020-10-06
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)