[1]CHEN Y J, DING Y Y, ZHAO F, et al. Surface defect detection methods for industrial products: a review[J]. Applied Sciences, 2021, 11(16): 7657. [2]罗东亮, 蔡雨萱, 杨子豪, 等. 工业缺陷检测深度学习方法综述[J]. 中国科学: 信息科学, 2022, 52(6): 1002-1039.
LUO D L, CAI Y X, YANG Z H, et al. Survey on industrial defect detection with deep learning[J]. Scientia Sinica (Informationis), 2022, 52(6): 1002-1039.
[3]REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4]CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018: 6154-6162.
[5]HE K M, GKIOXARI G, DOLLÁR P, et al. Mask RCNN[C]∥2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017: 2980-2988.
[6]LIU Y X, WU D B, LIANG J W, et al. Aeroengine blade surface defect detection system based on improved Faster RCNN[J]. International Journal of Intelligent Systems, 2023, 2023: 1992415.
[7]WEI B, HAO K R, GAO L, et al. Detecting textile micro-defects: a novel and efficient method based on visual gain mechanism[J]. Information Sciences, 2020, 541: 60-74.
[8]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[EB/OL].(2015-12-08)[202411-06].https:∥doi.org/10.48550/arXiv.1512.02325.
[9]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]∥2017 IEEE International Conference on Computer Vision. Piscataway:IEEE, 2017: 2999-3007.
[10] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2016: 779-788.
[11] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6517-6525.
[12] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL].(2018-04-08)[2024-11-06].https:∥doi.org/10.48550/arXiv.1804.02767.
[13] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection [EB/OL].(2020-04-23)[2024-11-06]. https:∥doi. org/10.48550/arXiv.2004.10934.
[14] LI C, LI L, JIANG H, et al. Yolov6: a single-stage object detection framework for industrial applications[EB/ OL]. (2022-09-01)[2024-11-06].https:∥doi. org/ 10.48550/arXiv.2209.02976.
[15]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2023: 7464-7475.
[16] ZHANG J D, XU J B, ZHU L Y, et al. An improved MobileNet-SSD algorithm for automatic defect detection on vehicle body paint[J]. Multimedia Tools and Applications, 2020, 79(31): 23367-23385.
[17] PAN K L, HU H Y, GU P. WD-YOLO: a more accurate YOLO for defect detection in weld X-ray images[J]. Sensors, 2023, 23(21): 8677.
[18] LIU M Y, CHEN Y P, XIE J M, et al. LF-YOLO: a lighter and faster YOLO for weld defect detection of X-ray image[J]. IEEE Sensors Journal, 2023, 23(7): 7430-7439.
[19]张震, 陈可鑫, 陈云飞. 优化聚类和引入CBAM的YOLOv5管制刀具检测[J]. 郑州大学学报(工学版), 2023, 44(5): 40-45, 61.
ZHANG Z, CHEN K X, CHEN Y F. YOLOv5 with optimized clustering and CBAM for controlled knife detection [J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(5): 40-45, 61.
[20]魏明军, 王镆涵, 刘亚志, 等. 基于特征融合和混合注意力的小目标检测[J]. 郑州大学学报(工学版), 2024, 45(3): 72-79.
WEI M J, WANG M H, LIU Y Z, et al. Small object detection based on feature fusion and mixed attention[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 72-79.
[21] XIE Y F, HU W T, XIE S W, et al. Surface defect detection algorithm based on feature-enhanced YOLO[J]. Cognitive Computation, 2023, 15(2): 565-579.
[22] GUO Z X, WANG C S, YANG G, et al. MSFT-YOLO: improved YOLOv5 based on transformer for detecting defects of steel surface[J]. Sensors, 2022, 22(9): 3467.
[23]WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580.
[24] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2018: 8759-8768.
[25] ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural Networks, 2018, 107: 3-11.
[26]时亚南, 陈志远, 刘兆英, 等. 改进YOLOv5n的管道DR缺陷图像检测方法[J]. 计算机工程与应用, 2024, 60(12): 366-372.
SHI Y N, CHEN Z Y, LIU Z Y, et al. Improved YOLOv5n pipeline DR defect image detection method [J]. Computer Engineering and Applications, 2024, 60 (12): 366-372.
[27] HE Y, SONG K C, MENG Q G, et al. An end-to-end steel surface defect detection approach via fusing multiple hierarchical features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4): 1493-1504.
[28] GE Z, LIU S T, WANG F, et al. YOLOX: exceeding YOLO series in 2021[EB/OL].(2021-07-18)[202411-06].https:∥arxiv.org/abs/2107.08430.
[29] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection [EB/OL].(2020-10-08)[2024-11-06]. https:∥doi. org/10.48550/arXiv.2010.04159.
[30]WANG C Y, YEH I H, LIAO H Y M. YOLOv9: learning what you want to learn using programmable gradient information[EB/OL].(2024-02-21)[2024-11-06]. https:∥doi.org/10.48550/arXiv.2402.13616.
[31] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020: 10778-10787.