STATISTICS

Viewed114

Downloads59

Task Offloading Strategy of UAV Edge Computing Based on Deep Reinforcement Learning
[1]WANG Feng,MA Xingyu,MENG Pengshuai,et al.Task Offloading Strategy of UAV Edge Computing Based on Deep Reinforcement Learning[J].Journal of Zhengzhou University (Engineering Science),2024,45(pre1):10-.[doi:10.13705/j.issn.1671-6833.2025.01.018]
Copy
References:

[ 1 ] PANWAR P, SHABAZ M, NAZIR S, et al. Generic edge computing system for optimization and computation offloading of unmanned aerial vehicle [ J ] . Computers and Electrical Engineering, 2023, 109: 108779.

[ 2 ]陈新颖, 盛敏, 李博, . 面向 6G 的无人机通信综述[ J] . 电子与信息学报, 2022, 44(3) : 781-789.

CHEN X Y, SHENG M, LI B, et al. Survey on unmanned aerial vehicle communications for 6G[ J] . Journal of Electronics & Information Technology, 2022, 44 (3) : 781-789.

[ 3 ] NGUYEN V, KHANH T T, VAN NAM P, et al. Towards flying mobile edge computing[ C]∥2020 International Conference on Information Networking ( ICOIN) . Piscataway: IEEE, 2020: 723-725.

[ 4 ] MA M L, GONG C Y, WU L T, et al. FLIRRAS: fast learning with integrated reward and reduced action space for online multitask offloading [ J ] . IEEE Internet of Things Journal, 2023, 10(6) : 5406-5417.

[ 5 ] AHANI G, YUAN D. BS-assisted task offloading for D2D networks with presence of user mobility[ C]∥2019 IEEE 89th Vehicular Technology Conference ( VTC2019-Spring) . Piscataway: IEEE, 2019: 1-5.

[ 6 ] LI N N, HAO W M, ZHOU F H, et al. Smart grid enabled computation offloading and resource allocation for SWIPT-based MEC system [ J] . IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(8) : 3610-3614.

[ 7 ] WANG L, HUANG P Q, WANG K Z, et al. RL-based user association and resource allocation for multi-UAV enabled MEC [ C ] ∥2019 15th International Wireless Communications & Mobile Computing Conference ( IWCMC) . Piscatawy: IEEE, 2019: 741-746.

[ 8 ] 王丙琛, 司怀伟, 谭国真. 基于深度强化学习的自动驾驶车控制算法研究[ J] . 郑州大学学报( 工学版) , 2020, 41(4) : 41-45, 80.

WANG B C, SI H W, TAN G Z. Research on autopilot control algorithm based on deep reinforcement learning [ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(4) : 41-45, 80.

[ 9 ] YE Y T, WEI W S, GENG D Q, et al. Dynamic coordination in UAV swarm assisted MEC via decentralized

deep reinforcement learning[ C]∥2020 International Conference on Wireless Communications and Signal Processing ( WCSP) . Piscataway: IEEE, 2020: 1064-1069.

[10] WANG L, WANG K Z, PAN C H, et al. Deep reinforcement learning based dynamic trajectory control for

UAV-assisted mobile edge computing[ J] . IEEE Transactions on Mobile Computing, 2022, 21(10) : 3536-3550.

[11] LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[ EB / OL] . (2019- 07 - 05 ) [ 2024 - 06 - 01 ] . https:∥arxiv. org /abs / 1509. 02971.

[12] MAO S, HE S F, WU J S. Joint UAV position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing[ J] . IEEE Systems Journal, 2021, 15(3) : 3992-4002.

[13] LIU Q, SHI L, SUN L L, et al. Path planning for UAVmounted mobile edge computing with deep reinforcement learning[ J] . IEEE Transactions on Vehicular Technology, 2020, 69(5) : 5723-5728.

[14] ZHANG L, ZHANG Z Y, MIN L, et al. Task offloading and trajectory control for UAV-assisted mobile edge computing using deep reinforcement learning [ J] . IEEE Access, 2021, 9: 53708-53719.

[15] WANG Y T, CHEN W W, LUAN T H, et al. Task offloading for post-disaster rescue in unmanned aerial vehicles networks [ J] . IEEE / ACM Transactions on Networking, 2022, 30(4) : 1525-1539.

[16] 李斌, 刘文帅, 费泽松. 面向空天地异构网络的边缘计算部分任务卸载策略[ J] . 电子与信息学报, 2022, 44(9) : 3091-3098.

LI B, LIU W S, FEI Z S. Partial computation offloading for mobile edge computing in space-air-ground integrated

network[ J] . Journal of Electronics & Information Technology, 2022, 44(9) : 3091-3098.

[17] HUO Y, LIU Q Y, GAO Q H, et al. Joint task offloading and resource allocation for secure OFDMA-based mobile edge computing systems [ J] . Ad Hoc Networks, 2024, 153: 103342.

[18] XU Y C, CHEN L L, LU Z H, et al. An adaptive mechanism for dynamically collaborative computing power and task scheduling in edge environment [ J] . IEEE Internet of Things Journal, 2023, 10(4) : 3118-3129.

[19] 李斌. 基于多智能体强化学习的多无人机边缘计算任务卸载[ J] . 无线电工程, 2023, 53(12) : 2731-2740. LI B. Multi-agent reinforcement learning-based task offloading for multi-UAV edge computing [ J] . Radio Engi

neering, 2023, 53(12) : 2731-2740.

[20] LI W, ZHOU F, CHOWDHURY K R, et al. QTCP: adaptive congestion control with reinforcement learning

[ J] . IEEE Transactions on Network Science and Engineering, 2019, 6(3) : 445-458.

[21] WANG P, NI W L. An enhanced dueling double deep Qnetwork with convolutional block attention module for traffic signal optimization in deep reinforcement learning[ J] . IEEE Access, 2024, 12: 44224-44232.


Similar References:
Memo

-

Last Update: 2024-11-12
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)