STATISTICS

Viewed8

Downloads8

Target Detection Algorithm Based on FEW-YOLOv8 Remote Sensing Images
[1]XI Yangli,QU Dan,WANG Fangfang,et al.Target Detection Algorithm Based on FEW-YOLOv8 Remote Sensing Images[J].Journal of Zhengzhou University (Engineering Science),2025,46(04):62-69.[doi:10.13705/j.issn.1671-6833.2025.04.007]
Copy
References:
[1] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection [ C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788. 
[2] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector [ C ] ∥ European Conference on Computer Vision. Cham: Springer, 2016: 21-37. 
[3] GAO F, CAI C X, JIA R H, et al. Improved YOLOX for pedestrian detection in crowded scenes [ J ] . Journal of Real-Time Image Processing, 2023, 20(2) : 1-13. 
[4] XU D Q, WU Y Q. FE-YOLO: a feature enhancement network for remote sensing target detection [ J] . Remote Sensing, 2021, 13(7) : 1311. 
[5] CHEN L Q, SHI W X, DENG D X. Improved YOLOv3 based on attention mechanism for fast and accurate ship detection in optical remote sensing images [ J] . Remote Sensing, 2021, 13(4) : 660. 
[6] XU D Q, WU Y Q. Improved YOLO-V3 with DenseNet for multi-scale remote sensing target detection [ J] . Sensors, 2020, 20(15) : 4276. 
[7] POUDEL R P K, BONDE U, LIWICKI S, et al. ContextNet: exploring context and detail for semantic segmentation in real-time[EB / OL]. (2018-11-05) [ 2024-10- 12] . http:∥arxiv. org / abs/ 1805. 04554. 
[8] CHEN J T, LEI B W, SONG Q Y, et al. A hierarchical graph network for 3D object detection on point clouds[C] ∥2020 IEEE / CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 389-398. 
[9] CHEN J R, KAO S H, HE H, et al. Run, don′t walk: chasing higher FLOPS for faster neural networks[C]∥2023 IEEE / CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 12021-12031. 
[10] ZHOU T, HUANG B, LI R R, et al. An attention-based deep learning model for citywide traffic flow forecasting [ J ] . International Journal of Digital Earth, 2022, 15 (1) : 323-344. 
[11] GAO R X, WANG T F. Motion deblurring algorithm for wind power inspection images based on Ghostnet and SE attention mechanism [ J] . IET Image Processing, 2023, 17(1) : 291-300 
[12] LI G B, SHI G L, JIAO J. YOLOv5-KCB: a new method for individual pig detection using optimized K-means, CA attention mechanism and a bi-directional feature pyramid network[ J] . Sensors, 2023, 23(11) : 5242. 
[13] OUYANG D L, HE S, ZHANG G Z, et al. Efficient multiscale attention module with cross-spatial learning[C]∥2023 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2023: 1-5. 
[14] YUAN Z, FANG W, ZHAO Y M, et al. Research of insect recognition based on improved YOLOv5[ J] . Journal on Artificial Intelligence, 2021, 3(4) : 145-152. 
[15] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors [ C] ∥2023 IEEE / CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. 
[16] YIN L L. Analysis recognition of ghost pepper and cilipadi using mask RCNN and YOLO[ J] . Przegl d Elektrotechniczny, 2023, 1(8) : 94-99. 
[17] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [ C]∥2018 IEEE / CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768. 
[18] ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[ J] . Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7) : 12993-13000. 
[19] WANG P J, BAYRAM B, SERTEL E. A comprehensive review on deep learning based remote sensing image super-resolution methods [ J ] . Earth Science Reviews, 2022, 232: 104110. 
[20] PENG X C, CHEN Y Z, CAI X W, et al. An improved YOLOv7-based model for real-time meter reading with PConv and attention mechanisms[ J] . Sensors, 2024, 24(11) : 3549. 
[21] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB / OL] . (2023-04-08) [2024-10-12] . https: ∥arxiv. org / abs/ 2301. 10051. 
[22] 贾云飞, 郑红木, 刘闪亮. 基于 YOLOv5s 的金属制品 表面缺陷的轻量化算法研究[ J] . 郑州大学学报( 工 学版) , 2022, 43(5) : 31-38. 
JIA Y F, ZHENG H M, LIU S L. Lightweight surface defect detection method of metal products based on YOLOv5s [ J] . Journal of Zhengzhou University ( Engineering Science) , 2022, 43(5) : 31-38. 
[23] 刘庆华, 杨欣仪, 接浩, 等. 基于融合 GhostNetV2 的 YOLO v7 水稻籽粒检测[ J] . 农业机械学报, 2023, 54 (12) : 253-260, 299. 
LIU Q H, YANG X Y, JIE H, et al. Rice grain detection based on YOLO v7 fusing of GhostNetV2[ J] . Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(12) : 253-260, 299. 
[24] 胡瑛,刘狄昆,刘拯,等. 基于改进 YOLOv5 的复杂场景 下交通标志识别方法[ J] . 湖南工程学院学报( 自然科 学版) , 2024,34(2) :31-38. 
HU Y, LIU D K, LIU Z, et al. Traffic sign recognition method in complex scenes based on improved YOLOv5 [ J] . Journal of Hunan Institute of Engineering ( Natural Science Edition) , 2024,34(2) :31-38. 
[25] 刘磊. YOLOv4 交通信号灯检测[ J] . 电子世界, 2021 (15) : 92-94. 
LIU L. YOLOv4 traffic light detection [ J] . Electronics World, 2021(15) : 92-94. 
[26] 邓翔宇, 裴浩媛, 盛迎. 基于网络融合的改进 MobileViT 人脸表情识别[ J] . 计算机工程与科学, 2024, 46(6) : 1072-1080. 
DENG X Y, PEI H Y, SHENG Y. Facial expression recognition based on network fusion to improve MobileViT [ J] . Computer Engineering & Science, 2024, 46 ( 6) : 1072-1080. 
[27] 胡施 威, 邓 建 新, 王 浩 宇, 等. 基 于 改 进 EfficientNetB0 模型的葡萄叶部病害识别方法[ J] . 现代电子 技术, 2024, 47(15) : 73-80. 
HU S W, DENG J X, WANG H Y, et al. Grape leaf disease identification method based on improved EfficientNetB0 model[ J] . Modern Electronics Technique, 2024, 47(15) : 73-80.
Similar References:
Memo

-

Last Update: 2025-07-13
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)