STATISTICS

Viewed382

Downloads361

Consistent Mass Matrix of Euler Beam Element including Shear Deformation
[1]ZHANG Junfeng,HU Lianchao,WU Jingjiang,et al.Consistent Mass Matrix of Euler Beam Element including Shear Deformation[J].Journal of Zhengzhou University (Engineering Science),2024,45(05):128-134.[doi:10.13705/j.issn.1671-6833.2024.05.009]
Copy
References:
[1] 梁岩, 闫士昌, 赵博洋, 等. 近断层高速铁路刚构桥地震易损性分析[ J] . 郑州大学学报(工学版) , 2022,43(4) : 80-85, 91.
LIANG Y, YAN S C, ZHAO B Y, et al. Seismic fragilityanalysis of rigid frame bridge near-fault high-speed railway [ J] . Journal of Zhengzhou University ( EngineeringScience) , 2022, 43(4) : 80-85, 91.
[2] 杨雅勋, 王成之, 柴文浩, 等. 断索对曲线斜拉桥力学性能的影响 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2023,44(5) : 101-107.
YANG Y X, WANG C Z, CHAI W H, et al. Effect ofbroken cable on mechanical properties of curved cablestayed bridge[ J] . Journal of Zhengzhou University ( Engineering Science) , 2023, 44(5) : 101-107.
[3] 王勖 成. 有 限 单 元 法 [ M ] . 北 京: 清 华 大 学 出 版社, 2003.
WANG X C. Finite element method[M] . Beijing: Tsinghua University Press, 2003.
[4] 王焕定,焦兆平. 有限单元法基础[M] . 北京: 高等教育出版社, 2002.
WANG H D, JIAO Z P. Fundament of finite elementmethods [M] . Beijing: Higher Education Press, 2002.
[5] 朱伯芳. 有限单元法原理与应用[M] . 4 版. 北京: 中国水利水电出版社, 2018
.ZHU B F. Finite element method theory and applications[M]. 4th ed. Beijing: China Water & Power Press, 2018.
[6] 胡于进, 王璋奇. 有限元分析及应用[ M] . 北京: 清华大学出版社, 2009.
HU Y J, WANG Z Q. Finite element analysis and applications[M] . Beijing: Tsinghua University Press, 2009.
[7] 杜平安, 甘娥忠, 于亚婷. 有限元法———原理、建模及应用[M] . 北京: 国防工业出版社, 2004.
DU P A, GAN E Z, YU Y T. Finite element method———principles, modelling and applications [M] . Beijing: National Defense Industry Press, 2004.
[8] COOK R D, MALKUS, D S, PLESHA M E, et al. Concepts and applications of finite element analysis [ M ] .New York: John Wily & Sons. Inc. , 2002.
[9] ARCHER J S. Consistent mass matrix for distributedmass systems [ J ] . Journal of the Structural Division,1963, 89(4) : 161-178.
[10] ARCHER J S. Consistent matrix formulations for structural analysis using finite-element techniques [ J ] . AIAAJournal, 1965, 3(10) : 1910-1918.
[11] PRZEMIENIECKI J S. Theory of matrix structural analysis [M] . New York: McGraw-Hill, 1968.
[12] 刘瑞岩. 全耦合梁单元的一致质量矩阵[ J] . 国防科技大学学报, 1984, 6(1) : 101-108.
LIU R Y. Consistent mass matrix for complete coupledbeam elements[ J] . Journal of National University of Defense Technology, 1984, 6(1) : 101-108.
[13] 杜柏松, 项海帆, 葛耀君, 等. 剪切效应梁单元刚度和质量矩 阵 的 推 导 及 应 用 [ J] . 重 庆 交 通 大 学 学 报(自然科学版) , 2008, 27(4) : 502-507.
DU B S, XIANG H F, GE Y J, et al. Derivation and application of 3D-beam′s element stiffness and mass matrixwith shear effect[ J] . Journal of Chongqing Jiaotong University (Natural Science) , 2008, 27(4) : 502-507.
[14] 李明瑞. 考虑剪切的梁单元的等效节点载荷和质量矩阵[J]. 北京农业工程大学学报, 1990, 10(2): 85-90.
LI M R. Equivalent nodal load and consistent mass matrixof beam element considering shearing effect[ J] . Journalof Beijing Agricultural Engineering University, 1990, 10(2) : 85-90.
[15] YOKOYAMA T. Vibrations of a hanging Timoshenkobeam under gravity[ J] . Journal of Sound and Vibration,1990, 141(2) : 245-258.
[16] CLOUGH R W, PENZIEN J. Dynamics of structures[M] . New York: McGraw-Hill, 2003.
[17] 张军锋, 尹会娜, 李杰, 等. 欧拉-伯努利梁单元刚度矩阵推导[ J] . 水利与建筑工程学报, 2019, 17( 3) :89-93, 131.
ZHANG J F, YIN H N, LI J, et al. Derivation of element stiffness matrix of Euler-Bernoulli beam element[ J] . Journal of Water Resources and Architectural Engineering, 2019, 17(3) : 89-93, 131.
[18] 张军锋, 尹会娜, 孙大勇, 等. 基于形函数推导考虑剪切变形的欧拉梁单元刚度矩阵[ J] . 重庆交通大学学报(自然科学版) , 2020, 39(9) : 59-66.
ZHANG J F, YIN H N, SUN D Y, et al. Euler beam element stiffness matrix considering shear deformation basedon shape function derivation [ J ] . Journal of ChongqingJiaotong University ( Natural Science ) , 2020, 39 ( 9 ) :59-66.
[19] 张军锋, 李杰, 尹会娜, 等. 考虑剪切变形的变截面欧拉梁单元刚度矩阵[J]. 结构工程师, 2020, 36(2): 43-50.
ZHANG J F, LI J, YIN H N, et al. Element stiffness matrix of tapered Euler beam element including shear deformation[J]. Structural Engineers, 2020, 36(2): 43-50.
Similar References:
Memo

-

Last Update: 2024-09-02
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)