STATISTICS

Viewed412

Downloads435

Monthly Runoff Prediction Method Based on Secondary Decomposition and SupportVector Machine
[1]GAN Rong,MA Chaoxin,GAO Yong,et al.Monthly Runoff Prediction Method Based on Secondary Decomposition and SupportVector Machine[J].Journal of Zhengzhou University (Engineering Science),2024,45(06):32-39.[doi:10.13705/j.issn.1671-6833.2024.06.003]
Copy
References:
[1] HIRABAYASHI Y, MAHENDRAN R, KOIRALA S, etal. Global flood risk under climate change [ J] . NatureClimate Change, 2013, 3(9) : 816-821.
[2] DEY P, MISHRA A. Separating the impacts of climatechange and human activities on streamflow: a review ofmethodologies and critical assumptions [ J ] . Journal ofHydrology, 2017,548:278-290.
[3] KOTTA J, HERKÜL K, JAAGUS J, et al. Linking atmospheric, terrestrial and aquatic environments: regimeshifts in the Estonian climate over the past 50 years[ J] .PLoS One, 2018, 13(12) : e0209568.
[4] HE X X, LUO J G, LI P, et al. A hybrid model basedon variational mode decomposition and gradient boostingregression tree for monthly runoff forecasting [ J] . WaterResources Management, 2020, 34(2) : 865-884.
[5] 雷庆文, 高培强, 李建林. 时序分解和 CNN-LSTM 相融合的月径流预报模型[ J] . 长江科学院院报, 2023,40(6) : 49-54.
LEI Q W, GAO P Q, LI J L. A monthly runoff forecastmodel combining time series decomposition and CNNLSTM [ J ] . Journal of Changjiang River Scientific Research Institute, 2023, 40(6) : 49-54.
[6] 王文川, 杜玉瑾, 和吉, 等. 基于 CEEMDAN-VMD-BP模型的月径流量预测研究[ J] . 华北水利水电大学学报(自然科学版) , 2023, 44(1) : 32-40, 48.
WANG W C, DU Y J, HE J, et al. Research on monthlyrunoff prediction based on CEEMDAN-VMD-BP model[ J] . Journal of North China University of Water Resources and Electric Power ( Natural Science Edition ) ,2023, 44(1) : 32-40, 48.
[7] YANG H, LI W D. Data decomposition, seasonal adjustment method and machine learning combined for runoffprediction: a case study [ J] . Water Resources Management, 2023, 37(1) : 557-581.
[8] 朱得胜, 吕锡芝, 倪用鑫, 等. 2001—2018 年伊洛河流域产 水 系 数 演 变 分 析 [ J] . 中 国 农 村 水 利 水 电,2022(9) : 139-145.
ZHU D S, LYU X Z, NI Y X, et al. An analysis of thechanges in the water yield coefficient in the Yiluo RiverBasin from 2001 to 2018[ J] . China Rural Water and Hydropower, 2022(9) : 139-145.
[9] HOU J, QIN T L, YAN D H, et al. Evaluation of waterland resources regulation potential in the Yiluo River Basin,China[J]. Ecological Indicators, 2023, 153: 110410.
[10] 张艺馨. 基于改进 BP 神经网络模型的采空区特殊下垫面条件下径流预报研究[D]. 太原: 太原理工大学, 2021.
ZHANG Y X. Study on runoff prediction of goaf with special underlying surface based on improved BP neural network model[D] . Taiyuan: Taiyuan University of Technology, 2021.
[11] 邢珊珊. 基于时空关联的城市快速路短时交通流预测方法研究[D] . 北京: 北京交通大学, 2017.
XING S S. Study on short-term traffic flow forecastingmethod of urban expressway based on spatial-temporal correlation[D]. Beijing: Beijing Jiaotong University, 2017.
[12] 薛联青, 周天文, 刘远洪, 等. 基于两阶段分解和可解释机器学习的中长期径流预测[ J] . 中国农村水利水电, 2023(7) : 1-7, 18.
XUE L Q, ZHOU T W, LIU Y H, et al. Medium andlong-term runoff forecasting based on two-stage decomposition and interpretable machine learning[ J] . China Rural Water and Hydropower, 2023(7) : 1-7, 18.
[13] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [ J] . IEEE Transactions on Signal Processing, 2014, 62(3) : 531-544.
[14] SHARMA V, PAREY A. Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed [ J ] . EngineeringFailure Analysis, 2020, 107: 104204.
[15] 廖晓辉, 陈川川. 改进的 VMD-HT 在电能质量扰动检测中的应用[ J] . 郑州大学学报( 工学版) , 2021, 42(1) : 21-27.
LIAO X H, CHEN C C. Application of improved VMDHT in power quality disturbance detection[ J] . Journal ofZhengzhou University ( Engineering Science) , 2021, 42(1) : 21-27.
[16] TOMAR D, AGARWAL S. Twin support vector machine:a review from 2007 to 2014 [ J ] . Egyptian InformaticsJournal, 2015, 16(1) : 55-69.
[17] 张颖超, 成金杰, 邓华, 等. 基于相似日和特征提取的短期风电功率预测[ J] . 郑州大学学报( 工学版) ,2020, 41(5) : 44-49.
ZHANG Y C, CHENG J J, DENG H, et al. Short-termwind power prediction based on similar day and featureextraction [ J] . Journal of Zhengzhou University ( Engineering Science) , 2020, 41(5) : 44-49.
[18] CHEN S, REN M M, SUN W. Combining two-stage decomposition based machine learning methods for annualrunoff forecasting [ J ] . Journal of Hydrology, 2021,603: 126945.
[19] 纪昌明, 周婷, 向腾飞, 等. 基于网格搜索和交叉验证的支持向量机在梯级水电系统隐随机调度中的应用[ J] . 电力自动化设备, 2014, 34(3) : 125-131.
JI C M, ZHOU T, XIANG T F, et al. Application ofsupport vector machine based on grid search and crossvalidation in implicit stochastic dispatch of cascaded hydropower stations[ J] . Electric Power Automation Equi
Similar References:
Memo

-

Last Update: 2024-09-29
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)