[2] 马凯, 田苗, 谭永健, 等. 基于四份区域地质调查报告构建的命名实体识别试验数据集研发[J]. 全球变化数据学报( 中英文), 2022, 6 ( 1 ): 78 - 84,237-243.
MA K, TIAN M, TAN Y J, et al. Development of a named entity recognition dataset based on four regional geological survey reports[ J]. Journal of Global Change Data & Discovery, 2022, 6(1): 78-84, 237-243.
[3] QIU Q J, XIE Z, WU L, et al. Automatic spatiotemporal and semantic information extraction from unstructured geosciences reports using text mining techniques[J]. Earth Science Informatics, 2020, 13(4): 1393-1410.
[4] 储德平, 万波, 李红, 等. 基于ELMO-CNN-BiLSTMCRF 模型的地质实体识别[J]. 地球科学, 2021, 46(8): 3039-3048.
CHU D P, WAN B, LI H, et al. Geological entity recognition based on ELMO-CNN-BiLSTM-CRF model [ J].Earth Science, 2021, 46(8): 3039-3048.
[5] DEVLIN J, CHANG M W, LEE K, et al. Bert: pretraining of deep bidirectional transformers for language understanding[EB/ OL]. (2018 - 10 - 11) [2023 - 03 -15]. https:∥arxiv. org/ abs/ 1810. 04805.
[6] ZOLNA K, ARPIT D, SUHUBDY D, et al. Fraternal dropout[EB/ OL]. (2017-10-31)[2023-03-15]. https:∥arxiv. org/ abs/ 1711. 00066.
[7] CUI Y M, CHE W X, LIU T, et al. Pre-training with whole word masking for Chinese BERT[J]. IEEE/ ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3504-3514.
[8] LIANG X B, WU L J, LI J T, et al. R-drop: regularized dropout for neural networks [ J/ OL]. ( 2021 - 10 - 29) [2023-03-15]. https:∥arxiv. org/ abs/ 2106. 14448.
[9] LIU P, GUO Y M, WANG F L, et al. Chinese named entity recognition: the state of the art[J]. Neurocomputing, 2022, 473: 37-53.
[10] LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactionson Knowledge and Data Engineering, 2022, 34(1):50-70.
[11] ZHANG J, SHEN D, ZHOU G D, et al. Enhancing HMM-based biomedical named entity recognition by studying special phenomena[J]. Journal of Biomedical Informatics, 2004, 37(6): 411-422.
[12] SAHA S K, SARKAR S, MITRA P. Feature selection techniques for maximum entropy based biomedical named entity recognition[J]. Journal of Biomedical Informatics, 2009, 42(5): 905-911.
[13] SUN C J, GUAN Y, WANG X L, et al. Rich features based conditional random fields for biological named entities recognition[J]. Computers in Biology and Medicine,2007, 37(9): 1327-1333.
[14] 张雪英, 叶鹏, 王曙, 等. 基于深度信念网络的地质实体识别方法[J]. 岩石学报, 2018, 34(2): 343-351.
ZHANG X Y, YE P, WANG S, et al. Geological entity recognition method based on deep belief networks [ J]. Acta Petrologica Sinica, 2018, 34(2): 343-351.
[15] QIU Q J, XIE Z, WU L, et al. BiLSTM-CRF for geological named entity recognition from the geoscience literature[J]. Earth Science Informatics, 2019, 12(4): 565-579.
[16] MIKOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C]∥Proceedings of the 26th International Conferenceon Neural Information Processing Systems: Volume2. New York: ACM, 2013: 3111-3119.
[17] HUANG C, WANG Y Z, YU Y Q, et al. Chinese named entity recognition of geological news based on BERT model[J]. Applied Sciences, 2022, 12(15): 7708.
[18] 王权于, 李振华, 涂志鹏, 等. 基于BERT-BiGRUCRF 模型的岩土工程实体识别[J]. 地球科学, 2023,48(8): 3137-3150.
WANG Q Y, LI Z H, TU Z P, et al. Geotechnical named entity recognition based on BERT-BiGRU-CRF model[J]. Earth Science, 2023, 48(8): 3137-3150.
[19] YU Y Q, WANG Y Z, MU J Q, et al. Chinese mineral named entity recognition based on BERT model[J]. Expert Systems with Applications, 2022, 206: 117727.
[20] LIU H, QIU Q J, WU L, et al. Few-shot learning for name entity recognition in geological text based on GeoBERT[J]. Earth Science Informatics, 2022, 15(2):979-991.
[21] CHO K, VAN M B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[EB/ OL]. (2014-06-03)[2023-03-15]. https:∥arxiv. org/ abs/ 1406. 1078.
[22] STRUBELL E, VERGA P, BELANGER D, et al. Fast and accurate entity recognition with iterated dilated convolutions[EB/ OL]. (2017-02-07) [2023-03-15]. https:∥arxiv. org/ abs/ 1702. 02098.
[23] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/ OL]. (2015-08-09)[2023-03-15]. https:∥arxiv. org/ abs/ 1508. 01991.
[24] CUI Z J, YUAN Z M, WU Y F, et al. Intelligent recommendation for departments based on medical knowledge graph[J]. IEEE Access, 2023, 11: 25372-25385.