STATISTICS

Viewed682

Downloads794

Inertia Lifting of New Energy Power System Based on VSG Droop Optimal Control
[1]WANG Mingdong,YANG Aodi,LI Longhao,et al.Inertia Lifting of New Energy Power System Based on VSG Droop Optimal Control[J].Journal of Zhengzhou University (Engineering Science),2024,45(03):127-133.[doi:10. 13705/ j. issn. 1671-6833. 2024. 03. 005]
Copy
References:
[1] 鲁宗相, 汤海雁, 乔颖,等. 电力电子接口对电力系统 频率控制的影响综述[J]. 中国电力, 2018, 51(1): 51-58. LU Z X, TANG H Y, QIAO Y, et al. The impact of power electronics interfaces on power system frequency control: a review[J]. Electric Power, 2018, 51(1): 51 -58.
[2] 李雪, 宋彦龙. 蓄电池储能运行控制对有源配电网影 响研究[J]. 郑州大学学报(工学版), 2019, 40(5): 32-38, 51. LI X, SONG Y L. Study on the influence of battery energy storage operation control on active distribution network [J]. Journal of Zhengzhou University (Engineering Science), 2019, 40(5): 32-38, 51.
[3] SONI N, DOOLLA S, CHANDORKAR M C. Improvement of transient response in microgrids using virtual inertia[ J]. IEEE Transactions on Power Delivery, 2013, 28 (3): 1830-1838.
[4] ATTYAABT, HARTKOPF T. Control and quantification of kinetic energy released by wind farms during power system frequency drops[J]. IET Renewable Power Generation, 2013, 7(3): 210-224.
[5] 李少林, 秦世耀, 王瑞明,等. 大容量双馈风电机组虚 拟惯量调频技术[ J]. 电力自动化设备, 2018, 38 (4): 145-150, 156. LI S L, QIN S Y, WANG R M, et al. Control strategy of virtual inertia frequency regulation for large capacity DFIG-based wind turbine[J]. Electric Power Automation Equipment, 2018, 38(4): 145-150, 156.
[6] 曾正, 赵荣祥, 汤胜清,等. 可再生能源分散接入用先 进并网逆变器研究综述[ J]. 中国电机工程学报, 2013, 33(24): 1-12, 21. ZENG Z, ZHAO R X, TANG S Q, et al. An overview on advanced grid-connected inverters used for decentralized renewable energy resources [ J ]. Proceedings of the CSEE, 2013, 33(24): 1-12, 21.
[7] KE Z P, DAI Y X, PENG Z S, et al. VSG control strategy incorporating voltage inertia and virtual impedance for microgrids[J]. Energies, 2020, 13(16): 4263.
[8] RASOOL A, YAN X W, RASOOL H, et al. VSG stability and coordination enhancement under emergency condition[ J]. Electronics, 2018, 7(9): 202.
[9] HUL L, FU L. Primary frequency modulation of microgrid based on consistent droop control method[J]. Journal of Physics: Conference Series, 2022, 2387(1): 012017.
[10] 罗兰, 王渝红, 陈诗昱,等. 基于虚拟同步发电机控制 策略的多端柔性直流系统自适应下垂控制[J]. 科学 技术与工程, 2021, 21(17): 7116-7121. LUO L, WANG Y H, CHEN S Y, et al. Adaptive droop control of multi-terminal direct current based on virtual synchronous generator control strategy[J]. Science Technology and Engineering, 2021, 21(17): 7116-7121.
[11] 孙孝峰, 王娟, 田艳军,等. 基于自调节下垂系数的 DG 逆变器控制[J]. 中国电机工程学报, 2013, 33 (36): 71-78, 11. SUN X F, WANG J, TIAN Y J, et al. Control of DG connected inverters based on self-adaptable adjustment of droop coefficient[ J]. Proceedings of the CSEE, 2013, 33(36): 71-78, 11.
[12] TORRES M, LOPES L A C. Virtual synchronous generator control in autonomous wind-diesel power systems[C] ∥2009 IEEE Electrical Power & Energy Conference (EPEC). Piscataway:IEEE, 2009: 1-6.
[13] KERDPHOL T, RAHMAN F S, WATANABE M, et al. Small-signal analysis of multiple virtual synchronous machines to enhance frequency stability of grid-connected high renewables [J]. IET Generation, Transmission & Distribution, 2021, 15(8): 1273-1289.
[14] CHENY, HESSE R, TURSCHNER D, et al. Improving the grid power quality using virtual synchronous machines [C]∥2011 International Conference on Power Engineering, Energy and Electrical Drives. Piscataway: IEEE, 2011: 1-6.
[15] ZHONG Q C, WEISS G. Synchronverters: inverters that mimic synchronous generators[J]. IEEE Transactions on Industrial Electronics, 2011, 58(4): 1259-1267.
[16] ALIPOOR J, MIURA Y, ISE T. Stability assessment and optimization methods for microgrid with multiple VSG units[ J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1462-1471.
[17] 张亚楠, 朱淼, 张建文,等. 基于自适应调节的微源逆 变器虚拟同步发电机控制策略[J]. 电源学报, 2016, 14(3): 11-19. ZHANG Y N, ZHU M, ZHANG J W, et al. Control strategy of virtual synchronous generator based on adaptive adjusting for distributed inverters[ J]. Journal of Power Supply, 2016, 14(3): 11-19.
[18] MOLINA-GARCÍA A, BOUFFARD F, KIRSCHEND S. Decentralized demand-side contribution to primary frequency control [ J]. IEEE Transactions on Power Systems, 2011, 26(1): 411-419.
[19] 李俊, 任冲, 樊国旗,等. 基于模糊控制的高占比风电 系统自适应虚拟惯量及调频参数补偿策略研究[J]. 电力电容器与无功补偿, 2021, 42(4): 55-61. LI J, REN C, FAN G Q, et al. Study on adaptive virtual inertia and frequency modulation parameter compensation strategy of high proportion wind power system based on fuzzy control [ J]. Power Capacitor & Reactive Power Compensation, 2021, 42(4): 55-61.
[20] WANG W Y, JIANG L, CAO Y J, et al. A parameter alternating VSG controller of VSC-MTDC systems for low frequency oscillation damping[J]. IEEE Transactions on Power Systems, 2020, 35(6): 4609-4621.
[21] 胡文强, 吴在军, 孙充勃, 等. 基于VSG 的储能系统 并网逆变器建模与参数整定方法[J]. 电力自动化设 备, 2018, 38(8): 13-23. HU W Q, WU Z J, SUN C B, et al. Modeling and parameter setting method for grid-connected inverter of energy storage system based on VSG[J]. Electric Power Automation Equipment, 2018, 38(8): 13-23.
[22] 丁小彬, 谢宇轩, 薛皓文,等. 基于神经网络算法的滚 刀磨损量预测方法[ J]. 郑州大学学报( 工学版), 2023, 44(1): 83-88, 95. DING X B, XIE Y X, XUE H W, et al. A method for disc cutter wear prediction based on neural network[J]. Journal of Zhengzhou University (Engineering Science), 2023, 44(1): 83-88, 95.

Similar References:
Memo

-

Last Update: 2024-04-29
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)