[2] 刘朋成, 项中明, 江全元, 等. 基于鲁棒容积卡尔曼 滤波的同步发电机实时动态状态估计方法[J]. 电网 技术, 2019, 43(8): 2860-2867. LIU P C, XIANG Z M, JIANG Q Y, et al. Real-time dynamic state estimation method of synchronous generator based on robust volume Kalman filter[J]. Power System Technology, 2019, 43(8): 2860-2867.
[3] 艾蔓桐, 孙永辉, 王义, 等. 基于插值H_∞ 扩展卡尔 曼滤波的发电机动态状态估计[J]. 中国电机工程学 报, 2018, 38(19): 5846-5853, 5942. AI M T, SUN Y H, WANG Y, et al. Dynamic state estimation for synchronous machines based on interpolation H_∞ extended Kalman filter [ J]. Proceedings of the CSEE, 2018, 38(19): 5846-5853, 5942.
[4] 黄蔓云, 王天昊, 卫志农, 等. 基于长短期记忆网络 的UKF 动态谐波状态估计[J]. 电力系统保护与控 制, 2022, 50(11):1-11. HUANG M Y, WANG T H, WEI Z N, et al. Dynamic harmonic state estimation of an unscented Kalman filter based on long short-term memory neural networks[J]. Power System Protection and Control, 2022, 50(11):1-11.
[5] 侯栋宸, 季嘉泓, 王建喜, 等. 基于伪量测自适应插 值策略的发电机动态状态估计[ J]. 高电压技术, 2021, 47(7): 2359-2366. HOU D C, JI J H, WANG J X, et al. Dynamic state estimation for synchronous machines based on pseudo measurement adaptive interpolation strategy[J]. High Voltage Engineering, 2021, 47(7): 2359-2366.
[6] HOU D C, SUN Y H, ZHANG L C, et al. Robust forecasting- aided state estimation considering uncertainty in distribution system[J]. CSEE Journal of Power and Energy Systems, 2022,PP(99):1-9.
[7] QI J J, SUN K, WANG J H, et al. Dynamic state estimation for multi-machine power system by unscented Kalman filter with enhanced numerical stability[ J]. IEEE Transactions on Smart Grid, 2018, 9(2): 1184-1196.
[8] ZHAO J B, MILI L, GÓMEZ-EXPÓSITO A. Constrained robust unscented Kalman filter for generalized dynamic state estimation [ J]. IEEE Transactions on Power Systems, 2019, 34(5): 3637-3646.
[9] YU S S, FAN X Q, CHAU T K, et al. Square-root sigma-point filtering approach to state estimation for wind turbine generators in interconnected energy systems[J]. IEEE Systems Journal, 2021, 15(2): 1557-1566.
[10] EMAMI K, FERNANDO T, IU H H C, et al. Particle filter approach to dynamic state estimation of generators in power systems[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2665-2675.
[11] 谢长君, 费亚龙, 曾春年, 等. 基于无迹粒子滤波的 车载锂离子电池状态估计[J]. 电工技术学报, 2018, 33(17): 3958-3964. XIE C J, FEI Y L, ZENG C N, et al. State-of-charge estimation of lithium-ion battery using unscented particle filter in vehicle[J]. Transactions of China Electrotechnical Society, 2018, 33(17): 3958-3964.
[12] CHEN L, CHEN J, WANG H M, et al. Remaining useful life prediction of battery using a novel indicator and framework with fractional grey model and unscented particle filter[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 5850-5859.
[13] 王义, 孙永辉, 南东亮, 等. 考虑参数不确定性影响 的发电机动态状态估计方法[J]. 电力系统自动化, 2020, 44(4):110-118. WANG Y, SUN Y H, NAN D L, et al. Dynamic state estimation method for generator considering influence of parameter uncertainties[J]. Automation of Electric Power Systems, 2020, 44(4):110-118.
[14] WEI W H, GAO S S, ZHONG Y M, et al. Adaptive square-root unscented particle filtering algorithm for dynamic navigation[J]. Sensors, 2018, 18(7): 2337.
[15] 李厚全, 刘莫尘, 伍志海, 等. 球面单形平方根无迹 粒子滤波在拖曳合成孔径声纳组合导航中的应用 [J]. 中国惯性技术学报, 2014, 22(4): 531-535. LI H Q, LIU M C, WU Z H, et al. Spherical simplex square-root unscented particle filter used in integrated navigation system of synthetic aperture sonar[J]. Journal of Chinese Inertial Technology, 2014, 22(4): 531-535.
[16] 宋宇, 李庆玲, 康轶非, 等. 平方根容积Rao-blackwillised 粒子滤波SLAM 算法[J]. 自动化学报, 2014, 40 (2): 357-367. SONG Y, LI Q L, KANG Y F, et al. SLAM with squareroot cubature Rao-blackwillised particle filter [ J]. Acta Automatica Sinica, 2014, 40(2): 357-367.
[17] 赵晋泉, 邓晖, 吴小辰, 等. 基于广域响应的电力系 统暂态稳定控制技术评述[J]. 电力系统保护与控制, 2016, 44(5): 1-9. ZHAO J Q, DENG H, WU X C, et al. Review on power system transient stability control technologies based on PMU/ WAMS[J]. Power System Protection and Control, 2016, 44(5): 1-9.
[18] ZHAO J B, NETTO M, HUANG Z Y, et al. Roles of dynamic state estimation in power system modeling, monitoring and operation[J]. IEEE Transactions on Power Systems, 2021, 36(3): 2462-2472.
[19] 赵洪山, 田甜. 基于自适应无迹卡尔曼滤波的电力系统 动态状态估计[J]. 电网技术, 2014, 38(1): 188-192. ZHAO H S, TIAN T. Dynamic state estimation for power system based on an adaptive unscented Kalman filter[J]. Power System Technology, 2014, 38(1): 188-192.
[20] 安军, 杨振瑞, 周毅博, 等. 基于平方根容积卡尔曼 滤波的发电机动态状态估计[ J]. 电工技术学报, 2017, 32(12):234-240. AN J, YANG Z R, ZHOU Y B, et al. Dynamic state estimator for synchronous-machines based on square root cubature Kalman filter[J]. Transactions of China Electrotechnical Society, 2017, 32(12):234-240.
[21] LEITE DA SILVA A M, DO COUTTO FILHO M B, DE QUEIROZ J F. State forecasting in electric power systems [J]. IEE Proceedings. Part C: Generation, Transmission and Distribution, 1983, 130(5): 237-244.
[22] 赵晖. 用样条插值法模拟典型日负荷曲线[J]. 电网 技术, 1998, 22(5): 39-41, 45. ZHAO H. Simulation of typical daily load curve with spline interpolation [ J ]. Power System Technology, 1998, 22(5): 39-41, 45.
[23] 葛立青, 刘青红, 王建锋, 等. 计及样本容量合理性 的风电功率预测考核算法[ J]. 电力系统自动化, 2017, 41(18): 118-123, 136. GE L Q, LIU Q H, WANG J F, et al. Assessment algorithm for wind power prediction considering rationality of sample size[J]. Automation of Electric Power Systems, 2017, 41(18): 118-123, 136.
[24] 李扬, 李京, 陈亮, 等. 复杂噪声条件下基于抗差容 积卡尔曼滤波的发电机动态状态估计[J]. 电工技术 学报, 2019, 34(17):3651-3660. LI Y, LI J, CHEN L, et al. Dynamic state estimation of synchronous machines based on robust cubature Kalman filter under complex measurement noise conditions[ J]. Transactions of China Electrotechnical Society, 2019, 34 (17):3651-3660.
[25] YU S S, GUO J H, CHAU T K, et al. An unscented particle filtering approach to decentralized dynamic state estimation for DFIG wind turbines in multi-area power systems [ J ]. IEEE Transactions on Power Systems, 2020, 35(4): 2670-2682.
[26] ZHAO J B. Dynamic state estimation with model uncertainties using H∞ extended Kalman filter[J]. IEEE Transactions on Power Systems, 2018, 33(1): 1099-1100.