STATISTICS

Viewed1030

Downloads968

State of Charge Estimation of LiFePO4 Battery Based on Modified Amper-hour Integral Method
[1]SONG Lei,LU Chunguang,LIU Lin,et al.State of Charge Estimation of LiFePO4 Battery Based on Modified Amper-hour Integral Method[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):84-90.[doi:10.13705/j.issn.1671-6833.2023.06.003]
Copy
References:
[1] 王少华. 电动汽车动力锂电池模型参数辨识和状态估 计方法研究[D] . 长春: 吉林大学,2016. 
WANG S H. Research on parameter identification and state estimation method of power lithium battery model for electric vehicle[D] . Changchun: Jilin University,2016. 
[2] SHRIVASTAVA P, SOON T K, BIN IDRIS M Y I, et al. Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries [ J] . Renewable and Sustainable Energy Reviews, 2019, 113: 109233. 
[3] LIN X F, KIM Y, MOHAN S, et al. Modeling and estimation for advanced battery management[ J] . Annual Review of Control, Robotics, and Autonomous Systems, 2019, 2: 393-426. 
[4] DONG G Z, WEI J W, ZHANG C B, et al. Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method[ J] . Applied Energy, 2016, 162: 163-171.
 [5] HU X S, LI S B, PENG H E. A comparative study of equivalent circuit models for Li-ion batteries[ J] . Journal of Power Sources, 2012, 198: 359-367. 
[6] LI W H, FAN Y, RINGBECK F, et al. Electrochemical model-based state estimation for lithium-ion batteries with adaptive unscented Kalman filter [ J] . Journal of Power Sources, 2020, 476: 228534.
 [7] RINGBECK F, GARBADE M, SAUER D U. Uncertainty-aware state estimation for electrochemical model-based fast charging control of lithium-ion batteries[ J] . Journal of Power Sources, 2020, 470: 228221. 
[8] 刘湘东, 刘承志, 杨梓杰, 等. 基于无迹卡尔曼滤波 的全钒液流电池状态估计[ J] . 中国电机工程学报, 2018, 38(6) : 1769-1777, 16. 
LIU X D, LIU C Z, YANG Z J, et al. States estimation of vanadium redox flow battery based on unscented Kalman filter[ J] . Proceedings of the CSEE, 2018, 38( 6) : 1769-1777, 16. 
[9] 续远. 基于安时积分法与开路电压法估 测 电 池 SOC [ J] . 新型工业化, 2022, 12(1) :123-124, 127. 
XU Y. Estimation of battery SOC based on ampere-hour integration method and open circuit voltage method [ J] . The Journal of New Industrialization, 2022, 12(1) :123- 124, 127. 
[10] LIN C, TANG A H, XING J L. Evaluation of electrochemical models based battery state-of-charge estimation approaches for electric vehicles [ J ] . Applied Energy, 2017, 207: 394-404.
 [11] MOURA S J, CHATURVEDI N A, KRSTIC ’ M. Adaptive partial differential equation observer for battery state-ofcharge / state-of-health estimation via an electrochemical model[ J] . Journal of Dynamic Systems, Measurement, and Control, 2014, 136(1) : 011015.
 [12] STURM J, ENNIFAR H, ERHARD S V, et al. State estimation of lithium-ion cells using a physicochemical model based extended Kalman filter [ J ] . Applied Energy, 2018, 223: 103-123. 
[13] TANIM T R, RAHN C D, WANG C Y. State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model [ J] . Energy, 2015, 80: 731-739.
 [14] PLETT G L. Sigma-point Kalman filtering for battery management systems of LiPB-based HEV battery packs [ J]. Journal of Power Sources, 2006, 161(2): 1356-1368.
 [15] WANG W H, MU J Y. State of charge estimation for lithium-ion battery in electric vehicle based on Kalman filter considering model error [ J ] . IEEE Access, 2019, 7: 29223-29235. 
[16] TRAN N T, VILATHGAMUWA M, LI Y, et al. State of charge estimation of lithium ion batteries using an extended single particle model and sigma-point Kalman filter [C]∥2017 IEEE Southern Power Electronics Conference ( SPEC) . Piscataway: IEEE, 2018: 1-6.
 [17] SHU X, LI G, SHEN J W, et al. An adaptive fusion estimation algorithm for state of charge of lithium-ion batteries considering wide operating temperature and degradation[ J] . Journal of Power Sources, 2020, 462: 228132.
 [18] LI W H, CAO D C, JÖST D, et al. Parameter sensitivity analysis of electrochemical model-based battery management systems for lithium-ion batteries[ J] . Applied Energy, 2020, 269: 115104.
 [19] RAMADESIGAN V, CHEN K J, BURNS N A, et al. Parameter estimation and capacity fade analysis of lithium-ion batteries using reformulated models [ J] . Journal of the Electrochemical Society, 2011, 158(9) : A1048.
 [20] STETZEL K D, ALDRICH L L, TRIMBOLI M S, et al. Electrochemical state and internal variables estimation using a reduced-order physics-based model of a lithium-ion cell and an extended Kalman filter[ J] . Journal of Power Sources, 2015, 278: 490-505.
Similar References:
Memo

-

Last Update: 2023-10-22
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)