STATISTICS

Viewed1097

Downloads1027

A Review of Structural Characteristics of Satisfiability Problems
[1]WANG Xiaofeng,PANG Lichao,MO Chunhui,et al.A Review of Structural Characteristics of Satisfiability Problems[J].Journal of Zhengzhou University (Engineering Science),2023,44(06):40-47.[doi:10.13705/j.issn.1671-6833.2023.03.013]
Copy
References:
[1] DYER M, FRIEZE A, MOLLOY M. A probabilistic analysis of randomly generated binary constraint satisfaction problems[ J] . Theoretical Computer Science, 2003, 290(3) : 1815-1828. 
[2] VIZEL Y, WEISSENBACHER G, MALIK S. Boolean satisfiability solvers and their applications in model checking[ J] . Proceedings of the IEEE, 2015, 103 ( 11 ) : 2021-2035. 
[3] DAVIS M, PUTNAM H. A computing procedure for quantification theory[ J] . Journal of the ACM, 1960, 7 (3) : 201-215.
 [4] ZHAO C Y, ZHOU H J, ZHENG Z M, et al. A message-passing approach to random constraint satisfaction problems with growing domains[ J] . Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011 ( 2 ): P02019.
 [5] WANG H F, FAN H, LI F L. Quantum algorithm for solving some discrete mathematical problems by probing their energy spectra[J]. Physical Review A, 2014, 89: 012306.
 [6] 莫孝玲, 许道云. CNF 公式赋值空间上可满足解的概 率性质[ J] . 计算机科学与探索, 2018, 12(11) : 1852 -1861. MO X L, XU D Y. Probabilistic properties of satisfiable solutions on space of assignments for CNF formula [ J] . Journal of Frontiers of Computer Science and Technology, 2018, 12(11) : 1852-1861.
 [7] ACHLIOPTAS D, COJA-OGHLAN A, RICCI-TERSENGHI F. On the solution-space geometry of random constraint satisfaction problems [ J ] . Random Structures & Algorithms, 2011, 38(3) : 251-268. 
[8] MEZARD M, RICCI-TERSENGHI F, ZECCHINA R. Two solutions to diluted p-spin models and XORSAT problems[ J] . Journal of Statistical Physics, 2003, 111 (3) : 505-533.
 [9] MANEVA E, SINCLAIR A. On the satisfiability threshold and clustering of solutions of random 3-SAT formulas [ J ] . Theoretical Computer Science, 2008, 407 ( 1 / 2 / 3) : 359-369. 
[10] MITZENMACHER M, UPFAL E. 概率与计算[ M] . 冉 启康等译. 北京: 机械工业出版社,2020. 
MITZENMACHER M, UPFAL E. Probability and computing[M] . RAN Q K, et al. Translated. Beijing: China Machine Press, 2020. 
[11] HARDY G H, LITTLEWOOD J E, PÓLYA G. Inequalities: a mathematical olympiad approach[M]. Cambridge: Cambridge University Press, 1952.
 [12] COJA-OGLAN A, PANAGIOTOU K. Catching the kNAESAT threshold[ C]∥Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing. New York: ACM, 2012: 899-908.
 [13] BOUFKHAD Y, DUBOIS O, INTERIAN Y, et al. Regular random k-SAT: properties of balanced formulas [ J] . Journal of Automated Reasoning, 2005, 35(1): 181-200. 
[14] DING J, SLY A, SUN N K. Satisfiability threshold for random regular NAE-SAT[ J] . Communications in Mathematical Physics, 2016, 341(2) : 435-489. 
[15] 张明明, 许道云. 正则 3-SAT 问题的相变现象[ J] . 计 算机科学, 2016, 43(4) : 33-36. 
ZHANG M M, XU D Y. Phase transition phenomenon of regular 3-SAT problem[ J] . Computer Science, 2016, 43 (4) : 33-36. 
[16] 周锦程, 许道云, 卢友军. 随机正则(k,r)-SAT 问题的可 满足临界[J]. 软件学报, 2016, 27(12): 2985-2993. 
ZHOU J C, XU D Y, LU Y J. Satisfiability threshold of the regular random ( k, r) -SAT problem [ J ] . Journal of Software, 2016, 27(12) : 2985-2993. 
[17] 王永平, 许道云. 取定 s 的严格 d-正则随机( 3, 2s) - SAT 问题的可满足临界[ J] . 软件学报, 2021, 32(9) : 2629-2641.
 WANG Y P, XU D Y. Satisfiability threshold of strictly d-regular random ( 3, 2s ) -SAT problem for fixed s [ J ] . Journal of Software, 2021, 32(9) : 2629-2641.
 [18] 周锦程, 许道云, 卢友军. 基于 1RSB 的正则 ( k,r) - SAT 问题可满足临界[ J] . 华中科技大学学报(自然科 学版) , 2017, 45(12) : 7-13. 
ZHOU J C, XU D Y, LU Y J. Satisfiability threshold of regular( k,r) -SAT problem via 1RSB theory[ J] . Journal of Huazhong University of Science and Technology (Natural Science Edition) , 2017, 45(12) : 7-13.
[19] 聂国霞, 秦永彬, 许道云. 基于因子图求解( 3, 4 = ) - CNF 公式类下可满足问题[ J] . 计算机与数字工程, 2013, 41(5) : 686-689. 
NIE G X, QIN Y B, XU D Y. Based on the factor graph for solving satisfiability problem of (3, 4 = ) -CNF formula class[ J ] . Computer & Digital Engineering, 2013, 41 (5) : 686-689.
 [20] 刘纯. 基于聚类的 SAT 实例结构分析[ D] . 武汉: 华 中科技大学, 2015. 
LIU C. The structural analysis of SAT instance based on clustering[ D] . Wuhan: Huazhong University of Science and Technology, 2015. 
[21] BERTELE U, BRIOSCHI F. Nonserial dynamic programming[M] . New York: Academic Press, 1972. 
[22] ARNBORG S, CORNEIL D G, PROSKUROWSKI A. Complexity of finding embeddings in a k-tree[ J] . SIAM Journal on Algebraic Discrete Methods, 1987, 8 ( 2 ) : 277-284.
 [23] FELLOWS M R, LANGSTON M A. Nonconstructive tools for proving polynomial-time decidability [ J ] . Journal of the ACM, 1988, 35(3) : 727-739.
 [24] ENRIGHT J, MEEKS K. Deleting edges to restrict the size of an epidemic: a new application for treewidth[ J] . Algorithmica, 2018, 80(6) : 1857-1889. 
[25] 雷 莹. 树 分 解 算 法 在 可 满 足 性 问 题 中 的 应 用 研 究 [D] . 贵阳: 贵州大学, 2020.
 LEI Y. Tree decomposition algorithm and application for the SAT[D] . Guiyang: Guizhou University, 2020.
 [26] TARJAN R E, YANNAKAKIS M. Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs [ J] . SIAM Journal on Computing, 1984, 13 ( 3) : 566 -579.
 [27] HELL P, KIRKPATRICK D G. Algorithms for degree constrained graph factors of minimum deficiency [ J ] . Journal of Algorithms, 1993, 14(1) : 115-138.
 [28] AMIR E. Approximation algorithms for treewidth[ J] . Algorithmica, 2010, 56(4) : 448-479.
 [29] ARNBORG S, PROSKUROWSKI A. Linear time algorithms for NP-hard problems restricted to partial k-trees [ J] . Discrete Applied Mathematics, 1989, 23 ( 1) : 11 -24.
 [30] KOSTER A M C A, VAN HOESEL S P M, KOLEN A W J. Solving partial constraint satisfaction problems with tree decomposition[ J] . Networks, 2002, 40(3) : 170-180.
 [31] ZHAO J Z, MALMBERG R L, CAI L M. Rapid ab initio prediction of RNA pseudoknots via graph tree decomposition[ J] . Journal of Mathematical Biology, 2008, 56(1) : 145-159.
 [32] ADCOCK A B, SULLIVAN B D, MAHONEY M W. Tree decompositions and social graphs[ J] . Internet Mathematics, 2016, 12(5) : 315-361. 
[33] 谢志新, 王晓峰, 于卓, 等. 基于树宽的警示传播算 法收敛性分析[ J] . 计算机应用研究, 2022, 39( 10) : 3061-3064, 3077. 
XIE Z X, WANG X F, YU Z, et al. Convergence analysis of warning propagation algorithm based on tree width [ J ] . Application Research of Computers, 2022, 39 (10) : 3061-3064, 3077.
 [34] 程亚南, 王晓峰, 刘凇佐, 等. 一种求解旅行商问题 的信息传播算法[ J] . 郑州大学学报(理学版) , 2022, 54(3) : 52-58. 
CHENG Y N, WANG X F, LIU S Z, et al. An information propagation algorithm for solving traveling salesman problem[ J] . Journal of Zhengzhou University ( Natural Science Edition) , 2022, 54(3) : 52-58.
 [35] LI A S, PAN Y C. Structural information and dynamical complexity of networks[ J] . IEEE Transactions on Information Theory, 2016, 62(6) : 3290-3339.
 [36] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[ J] . Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69 (2) : 026113. 
[37] 成科扬, 荣兰, 蒋森林, 等. 基于深度学习的遥感图 像超分辨率重建方法综述[ J] . 郑州大学学报( 工学 版) , 2022, 43(5) : 8-16. 
CHENG K Y, RONG L, JIANG S L, et al. Overview of methods for remote sensing image super-resolution reconstruction based on deep learning [ J] . Journal of Zhengzhou University (Engineering Science) , 2022, 43(5) : 8 -16.
 [38] ROTTA R, NOACK A. Multilevel local search algorithms for modularity clustering[ J] . ACM Journal of Experimental Algorithmics, 2011, 16(2) :1-27.
 [39] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[ J] . Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008(10) : P10008.
 [40] BROOKS J F P. Three great challenges for half-centuryold computer science[ J] . Journal of the ACM, 2003, 50 (1) : 25-26. 
[41] LIU X C, FU L Y, WANG X B, et al. On the similarity between Von Neumann graph entropy and structural information: interpretation, computation, and applications [C]∥IEEE Transactions on Information Theory. Piscataway: IEEE, 2022: 2182-2202. 
[42] BRAUNSTEIN S L, GHOSH S, SEVERINI S. The Laplacian of a graph as a density matrix: a basic combinatorial approach to separability of mixed states[ J] . Annals of Combinatorics, 2006, 10(3) : 291-317. 
[43] ZHANG Z J, XU D Y, ZHOU J C. A structural entropy measurement principle of propositional formulas in conjunctive normal form[ J] . Entropy, 2021, 23(3) : 303. 
[44] 牛进, 王晓峰, 左逢源, 等. 基于二维结构熵的置信 传播算法收敛性分析[ J] . 计算机应用研究, 2021, 38 (7) : 2032-2036, 2043. 
NIU J, WANG X F, ZUO F Y, et al. Convergence analysis of belief propagation algorithm based on two-dimensional structural entropy [ J ] . Application Research of Computers, 2021, 38(7) : 2032-2036, 204.
 [45] ADLEMAN L M. Molecular computation of solutions tocombinatorial problems[ J] . Science, 1994,266( 5187) : 1021-1024.
 [46] LIPTON R J. Using DNA to solve NP-complete problems [ J] . Science. 1995,268:542-545.
 [47] SAKAMOTO K, GOUZU H, KOMIYA K, et al. Molecular computation by DNA hairp information[ J] . Science, 2000,288(5469) :1223-1226. 
[48] BRAICH R S, CHELYAPOV N, JOHNSON C, et al. Solution of a 20-variable 3-SAT problem on a DNA computer[ J] . Science, 2002, 296(5567) : 499-502.
 [49] 张凤月, 殷志祥, 许进. DNA 芯片在 0-1 规划问题中 的应 用 [ J] . 生 物 化 学 与 生 物 物 理 进 展, 2003, 30 (3) : 412-415. 
ZHANG F Y, YIN Z X, XU J. Application of DNA chip on 0-1 planning problem [ J ] . Progress in Biochemistry and Biophysics, 2003, 30(3) : 412-415.
 [50] 周康, 魏传佳, 刘朔, 等. 可满足性问题的闭环 DNA 算法[ J] . 华中 科 技 大 学 学 报 ( 自 然 科 学 版) , 2009, 37(7) : 75-78. 
ZHOU K, WEI C J, LIU S, et al. Closed circle DNA algorithm for SAT problem[ J] . Journal of Huazhong University of Science and Technology ( Nature Science Edition) , 2009, 37(7) : 75-78. 
[51] XIAO J H, XU J. The DNA computation model based on giant magnetoresistance for SAT problem [ J ] . Chinese Journal of Computers, 2014, 36(4) : 829-835.
 [52] 马莹, 殷志祥, 方欢. 可满足性问题生物芯片 DNA 算 法[ J ] . 计 算 机 应 用 研 究, 2017, 34 ( 8 ) : 2310 - 2311, 2367. 
MA Y, YIN Z X, FANG H. DNA computation model based on biochips for satisfiability problem[ J] . Application Research of Computers, 2017, 34 ( 8 ) : 2310 - 2311, 2367.
 [53] 陈哲. 基 于 DNA 计 算 的 可 满 足 性 问 题 的 模 型 研 究 [D] . 淮南: 安徽理工大学, 2020. 
CHEN Z. Research on the model of satisfiability based on DNA computing[D] . Huainan: Anhui University of Science & Technology, 2020. 
[54] 麻晶晶, 许进. 基于 DNA 折纸术求解图的顶点着色 问题的 方 法 [ J] . 电 子 与 信 息 学 报, 2021, 43 ( 6) : 1750-1755. 
MA J J, XU J. A method for the graph vertex coloring problem based on DNA origami[ J] . Journal of Electronics & Information Technology, 2021, 43 ( 6 ) : 1750 -1755.
Similar References:
Memo

-

Last Update: 2023-10-22
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)