STATISTICS

Viewed1123

Downloads1062

Local Path Planning of Artificial Potential Field Based on Improved Repulsive Model
[1]CHEN Jiangyi,YIN Xiaoyong,WANG Tingting,et al.Local Path Planning of Artificial Potential Field Based on Improved Repulsive Model[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):85-89.[doi:10.13705/j.issn.1671-6833.2022.06.015]
Copy
References:
[1] 宁世发, 冯忠祥. 道路交通事故成因分析[J]. 交通标准化, 2006, 34(10): 152-155.NING S F, FENG Z X. Analysis on the cause of road traffic accidents[J]. Communications Standardization, 2006, 34(10): 152-155.
[2] 彭晓燕, 谢浩, 黄晶. 无人驾驶汽车局部路径规划算法研究[J]. 汽车工程, 2020, 42(1): 1-10.PENG X Y, XIE H, HUANG J. Research on local path planning algorithm for unmanned vehicles[J]. Automotive Engineering, 2020, 42(1): 1-10.
[3] KHATIB O. Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research, 1986, 5(1): 90-98.
[4] LI G H, YAMASHITA A, ASAMA H, et al. An efficient improved artificial potential field based regression search method for robot path planning[C]∥2012 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE, 2012: 1227-1232.
[5] 于振中, 闫继宏, 赵杰, 等. 改进人工势场法的移动机器人路径规划[J]. 哈尔滨工业大学学报, 2011, 43(1): 50-55.YU Z Z, YAN J H, ZHAO J, et al. Mobile robot path planning based on improved artificial potential field me-thod[J]. Journal of Harbin Institute of Technology, 2011, 43(1): 50-55.
[6] HUANG Y Q, HU H, LIU X Q. Obstacles avoidance of artificial potential field method with memory function in complex environment[C]∥2010 8th World Congress on Intelligent Control and Automation. Piscataway: IEEE, 2010: 6414-6418.
[7] 徐飞. 基于改进人工势场法的机器人避障及路径规划研究[J]. 计算机科学, 2016, 43(12): 293-296.XU F. Research on robot obstacle avoidance and path planning based on improved artificial potential field method[J]. Computer Science, 2016, 43(12): 293-296.
[8] FEDELE G, D′ALFONSO L, CHIARAVALLOTI F, et al. Obstacles avoidance based on switching potential functions[J]. Journal of Intelligent &Robotic Systems, 2018, 90(3/4): 387-405.
[9] 范玉龙, 黄波, 周仟, 等. 基于改进人工势场法的小车避障路径规划研究[J]. 软件导刊, 2021, 20(7): 38-42.FAN Y L, HUANG B, ZHOU Q, et al. Research on vehicle obstacle avoidance path planning based on improved artificial potential field method[J]. Software Guide, 2021, 20(7): 38-42.
[10] 张三川, 明珠. 基于主动安全的改进人工势场局部路径规划研究[J]. 郑州大学学报(工学版), 2021, 42(5): 32-36, 55.ZHANG S C, MING Z. Research on improved local path planning of artificial potential field based on active safety[J]. Journal of Zhengzhou University (Engineering Science), 2021, 42(5): 32-36, 55.
[11] 王树凤, 张钧鑫, 刘宗锋. 基于改进人工势场法的智能车辆超车路径规划研究[J]. 汽车技术, 2018(3): 5-9.WANG S F, ZHANG J X, LIU Z F. A research on overtaking lane planning for intelligent vehicles based on improved artificial potential field method[J]. Automobile Technology, 2018(3): 5-9.
[12] 谭宝成, 崔佳超. 改进人工势场法在无人车避障中的应用[J]. 西安工业大学学报, 2014, 34(12): 1007-1011, 1017.TAN B C, CUI J C. Application of improved artificial potential field method in intelligent collision avoidance system on structured road[J]. Journal of Xi′an Technological University, 2014, 34(12): 1007-1011, 1017.
[13] 胡丹丹, 张琪. 基于PER-APF算法的无人驾驶汽车换道轨迹规划[J]. 计算机测量与控制, 2022, 30(6): 229-234, 241.HU D D, ZHANG Q. Lane changing trajectory planning of driverless vehicle based on PER-APFAlgorithm[J]. Computer Measurement &Control, 2022, 30(6): 229-234, 241.
[14] 来飞, 黄超群, 董红亮. 智能汽车自动紧急避撞系统的安全距离模型及其对比分析[J]. 重庆理工大学学报(自然科学), 2020, 34(9): 39-46.LAI F, HUANG C Q, DONG H L. Safety distance model and comparative analysis for intelligent vehicle emergency collision avoidance system[J]. Journal of Chongqing University of Technology (Natural Science), 2020, 34(9): 39-46.
[15] 冀杰, 姬鹏, 彭和, 等. 面向车辆主动避撞的三维虚拟危险势能场设计[J]. 汽车工程, 2016, 38(9): 1065-1071, 1079.JI J, JI P, PENG H, et al. Design of 3D virtual dange-rous potential field for vehicle active collision avoidance[J]. Automotive Engineering, 2016, 38(9): 1065-1071, 1079.
Similar References:
Memo

-

Last Update: 2023-05-09
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)