STATISTICS

Viewed898

Downloads663

Research Status of Bioceramic Materials for Bone Substitute
[1]GAO Jinxing,LI Liya,MU Jinghua,et al.Research Status of Bioceramic Materials for Bone Substitute[J].Journal of Zhengzhou University (Engineering Science),2023,44(04):80-87.[doi:10.13705/j.issn.1671-6833.2023.01.010]
Copy
References:
[1] D′ALESSANDRO D, RICCI C, MILAZZO M, et al. Piezoelectric signals in vascularized bone regeneration[J]. Biomolecules, 2021, 11(11): 1731.
[2] SALGADO A J, COUTINHO O P, REIS R L. Bone tissue engineering: state of the art and future trends[J]. Macromolecular Bioscience, 2004, 4(8): 743-765.
[3] SRINATH P, ABDUL AZEEM P, VENUGOPAL REDDY K. Review on calcium silicate-based bioceramics in bone tissue engineering[J]. International Journal of Applied Ceramic Technology, 2020, 17(5): 2450-2464.
[4] TOMMASI G, PERNI S, PROKOPOVICH P. An injectable hydrogel as bone graft material with added antimicrobial properties[J]. Tissue Engineering Part A, 2016, 22(11/12): 862-872.
[5] 李少鹏, 陈豪杰, 杨帆, 等. 可降解镁金属在骨科中的应用[J]. 生物骨科材料与临床研究, 2021, 18(4): 92-96.LI S P, CHEN H J, YANG F, et al. Application of degradable magnesium metal in orthopaedics[J]. Orthopaedic Biomechanics Materials and Clinical Study, 2021, 18(4): 92-96.
[6] SHEKHAWAT D, SINGH A, BANERJEE M K, et al. Bioceramic composites for orthopaedic applications: a comprehensive review of mechanical, biological, and microstructural properties[J]. Ceramics International, 2021, 47(3): 3013-3030.
[7] SHUAI C J, YU L, FENG P, et al. Interfacial reinforcement in bioceramic/biopolymer composite bone scaffold: the role of coupling agent[J]. Colloids and Surfaces B: Biointerfaces, 2020, 193: 111083.
[8] BIASETTO L, BERTOLINI R, ELSAYED H, et al. Use of cryogenic machining to improve the adhesion of sphene bioceramic coatings on titanium substrates for dental and orthopaedic applications[J]. Ceramics International, 2019, 45(5): 5941-5951.
[9] 邹云, 王起龙, 李阳, 等. 基于超声纳米表面改性的镁锂合金强化研究[J]. 郑州大学学报(工学版), 2020, 41(5): 26-30.ZOU Y, WANG Q L, LI Y, et al. Strengthening research of Mg-Li alloy based on ultrasonic nanocrystal surface modification[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 26-30.
[10] DE JONG W F. La substance minérale dans les os[J]. Recueil des Travaux Chimiques des Pays-Bas, 1926, 45(6): 445-448.
[11] LIU Y, LUO D, WANG T. Hierarchical structures of bone and bioinspired bone tissue engineering[J]. Small, 2016, 12(34): 4611-4632.
[12] UPOV M. Substituted hydroxyapatites for biomedical applications: a review[J]. Ceramics International, 2015, 41(8): 9203-9231.
[13] SADAT-SHOJAI M, KHORASANI M T, DINPANAH-KHOSHDARGI E, et al. Synthesis methods for nanosized hydroxyapatite with diverse structures[J]. Acta Biomaterialia, 2013, 9(8): 7591-7621.
[14] ULLAH I, GLORIA A, ZHANG W C, et al. Synthesis and characterization of sintered Sr/Fe-modified hydroxyapatite bioceramics for bone tissue engineering applications[J]. ACS Biomaterials Science &Engineering, 2020, 6(1): 375-388.
[15] ZHOU T Y, ZHANG L, YAO Q, et al. SLA 3D printing of high quality spine shaped β-TCP bioceramics for the hard tissue repair applications[J]. Ceramics International, 2020, 46(6): 7609-7614.
[16] AZEENA S, SUBHAPRADHA N, SELVAMURUGAN N, et al. Antibacterial activity of agricultural waste derived wollastonite doped with copper for bone tissue engineering[J]. Materials Science and Engineering: C, 2017, 71: 1156-1165.
[17] ROS-Twidth=11,height=14,dpi=110RRAGA P, MAZwidth=11,height=14,dpi=110N P, REVILLA-NUIN B, et al. High temperature CaSiO3-Ca3(PO4)2 ceramic promotes osteogenic differentiation in adult human mesenchymal stem cells[J]. Materials Science and Engineering: C, 2020, 107: 110355.
[18] LI H Y, XUE K, KONG N, et al. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells[J]. Biomaterials, 2014, 35(12): 3803-3818.
[19] CHOUDHARY R, CHATTERJEE A, VENKATRAMAN S K, et al. Antibacterial forsterite (Mg2SiO4) scaffold: a promising bioceramic for load bearing applications[J]. Bioactive Materials, 2018, 3(3): 218-224.
[20] BHASKAR N, SARKAR D, BASU B. Probing cytocompatibility, hemocompatibility, and quantitative inflammatory response in Mus musculus toward oxide bioceramic wear particulates and a comparison with CoCr[J]. ACS Biomaterials Science &Engineering, 2018, 4(9): 3194-3210.
[21] SHI Y L, WANG W Q. 3D inkjet printing of the zirconia ceramic implanted teeth[J]. Materials Letters, 2020, 261: 127131.
[22] ATE S, BARAN E, YAZICI B. The nanoporous anodic alumina oxide formed by two-step anodization[J]. Thin Solid Films, 2018, 648: 94-102.
[23] LUCAS T J, LAWSON N C, JANOWSKI G M, et al. Effect of grain size on the monoclinic transformation, hardness, roughness, and modulus of aged partially stabilized zirconia[J]. Dental Materials, 2015, 31(12): 1487-1492.
[24] SANON C, CHEVALIER J, DOUILLARD T, et al. A new testing protocol for zirconia dental implants[J]. Dental Materials, 2015, 31(1): 15-25.
[25] 卢红霞, 高凯, 李明亮, 等. 以高炉渣为助烧剂制备ZTA/TiC复合陶瓷及其性能研究[J]. 郑州大学学报(工学版), 2020, 41(5): 8-14.LU H X, GAO K, LI M L, et al. Preparation of ZTA/TiC composite ceramics using blast furnace slag as sintering aid[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(5): 8-14.
[26] GINEBRA M P, ESPANOL M, MAAZOUZ Y, et al. Bioceramics and bone healing[J]. EFORT Open Reviews, 2018, 3(5): 173-183.
[27] PEZZOTTI G. Silicon nitride: a bioceramic with a gift[J]. ACS Applied Materials &Interfaces, 2019, 11(30): 26619-26636.
[28] PEZZOTTI G, BOCK R M, ADACHI T, et al. Silicon nitride surface chemistry: a potent regulator of mesenchymal progenitor cell activity in bone formation[J]. Applied Materials Today, 2017, 9: 82-95.
[29] LANGE F F. The sophistication of ceramic science through silicon nitride studies[J]. Journal of the Ceramic Society of Japan, 2006, 114(11): 873-879.
[30] BAL B S, KHANDKAR A, LAKSHMINARAYANAN R, et al. Fabrication and testing of silicon nitride bearings in total hip arthroplasty: winner of the 2007 “HAP” Paul Award[J]. The Journal of Arthroplasty, 2009, 24(1): 110-116.
[31] BODI , V  K, KA IAROV M, DOMANICK  M, et al. Porous silicon nitride ceramics designed for bone substitute applications[J]. Ceramics International, 2013, 39(7): 8355-8362.
[32] KERSTEN R F M R, VAN GAALEN S M, ARTS M P, et al. The SNAP trial: a double blind multi-center randomized controlled trial of a silicon nitride versus a PEEK cage in transforaminal lumbar interbody fusion in patients with symptomatic degenerative lumbar disc disorders: study protocol[J]. BMC Musculoskeletal Disorders, 2014, 15: 57.
[33] LI M, ZHANG L G, ZHANG C, et al. Effect of Y2O3 on the physical properties and biocompatibility of β-SiAlON ceramics[J]. Ceramics International, 2020, 46(15): 23427-23432.
[34] ZHANG L G, LIU X J, LI M, et al. Feasibility of SiAlON-Si3N4 composite ceramic as a potential bone repairing material[J]. Ceramics International, 2020, 46(2): 1760-1765.
[35] XIE H X, ZHANG L G, XU E X, et al. SiAlON-Al2O3 ceramics as potential biomaterials[J]. Ceramics International, 2019, 45(14): 16809-16813.
[36] ZHANG L G, ZHANG C, XU E X, et al. Effect of ZrO2 on the physicochemical properties and biological properties of β-SiAlON-ZrO2 composite ceramics[J]. Ceramics International, 2021, 47(1): 1244-1252.
[37] LUO M, HOU G Y, YANG J F, et al. Manufacture of fibrous β-Si3N4-reinforced biomorphic SiC matrix composites for bioceramic scaffold applications[J]. Materials Science and Engineering: C, 2009, 29(4): 1422-1427.
[38] GONZ LEZ P, SERRA J, LISTE S, et al. New biomorphic SiC ceramics coated with bioactive glass for biomedical applications[J]. Biomaterials, 2003, 24(26): 4827-4832.
[39] FURKO M, BELLA E D, FINI M, et al. Corrosion and biocompatibility examination of multi-element modified calcium phosphate bioceramic layers[J]. Materials Science and Engineering: C, 2019, 95: 381-388.
[40] MELERO H, FARGAS G, GARCIA-GIRALT N, et al. Mechanical performance of bioceramic coatings obtained by high-velocity oxy-fuel spray for biomedical purposes[J]. Surface and Coatings Technology, 2014, 242: 92-99.
[41] CHEN Q Y, ZOU Y L, FU W, et al. Wear behavior of plasma sprayed hydroxyapatite bioceramic coating in simulated body fluid[J]. Ceramics International, 2019, 45(4): 4526-4534.
[42] PEZZOTTI G, MCENTIRE B J, BOCK R, et al. In situ spectroscopic screening of osteosarcoma living cells on stoichiometry-modulated silicon nitride bioceramic surfaces[J]. ACS Biomaterials Science &Engineering, 2016, 2(7): 1121-1134.
[43] STEFANIC M, KOSMA T. β-TCP coatings on zirconia bioceramics: the importance of heating temperature on the bond strength and the substrate/coating interface[J]. Journal of the European Ceramic Society, 2018, 38(15): 5264-5269.
[44] BAINO F, VITALE-BROVARONE C. Wollastonite-containing bioceramic coatings on alumina substrates: design considerations and mechanical modelling[J]. Ceramics International, 2015, 41(9): 11464-11470.
[45] TORRES A L, GASPAR V M, SERRA I R, et al. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration[J]. Materials Science and Engineering: C, 2013, 33(7): 4460-4469.
Similar References:
Memo

-

Last Update: 2023-07-01
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)