STATISTICS

Viewed3543

Downloads2348

Summary of New Group Intelligent Optimization Algorithms
[1]GAO Yuelin,YANG Qinwen,WANG Xiaofeng,et al.Summary of New Group Intelligent Optimization Algorithms[J].Journal of Zhengzhou University (Engineering Science),2022,43(03):21-30.[doi:10.13705/j.issn.1671-6833.2022.03.007]
Copy
References:
[1] 韩丽霞. 自然启发的优化算法及其应用研究[ D] . 西安:西安电子科技大学,2009. 
[2] 李士勇,李 研,林 永 茂. 智 能 优 化 算 法 与 涌 现 计 算 [M] . 北京:清华大学出版社,2019.
 [3] METROPOLIS N,ROSENBLUTH A W,ROSENBLUTH M N,et al. Equation of state calculations by fast computing machines [ J ]. The journal of chemical physics, 1953,21(6):1087-1092. 
[4] KIRKPATRICK S, Jr GELATT C D,VECCHI M P. Optimization by simulated annealing [ J ] . Science, 1983,220(4598) :671-680. 
[5] HOSSEINI H S. Problem solving by intelligent water drops[C] / / 2007 IEEE Congress on Evolutionary Computation. Piscataway:IEEE,2007:3226-3231.
 [6] HOSSEINI H S. Intelligent water drops algorithm[ J] . International journal of intelligent computing and cybernetics,2008,1(2) :193-212.
 [7] 华一村,刘奇奇,郝矿荣,等. 非规则 Pareto 前沿面 多目标进化优化算法研究综述[ J] . 郑州大学学报 (工学版) ,2021,42(1) :1-8.
 [8] HOLLAND J H. Adaptation in natural and artificial systems: an introductory analysis with application to biology[M] . Cambridge:MIT press,1992.
 [9] STORN R, PRICE K. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces [ J ] . Journal of global optimization, 1997,11(4) :341-359. 
[10] MEHRABIAN A R,LUCAS C. A novel numerical optimization algorithm inspired from weed colonization [ J] . Ecological informatics,2006,1(4) :355-366. 
[11] YANG X S. Flower pollination algorithm for global optimization[C] / / Unconventional Computation and Natural Computation. Berlin:Springer,2012: 240-249.
 [12] BENI G, WANG J. Swarm intelligence in cellular robotic systems [ J] . Robots and biological systems: towards a new bionics, 1993,102: 703-712. 
[13] COLORNI A, DORIGO M, MANIEZZO V,et al. Distributed optimization by ants colonies[C] / / Proceedings of the 1st European Conference on Artificial Life. Paris: El Sevier Publishing, 1991: 134-142.
 [14] KENNEDY J,EBERHART R. Particle swarm optimization[ C] / / Proceedings of ICNN′95-International Conference on Neural Networks. Piscataway: IEEE,1995: 1942-1948. 
[15] YANG X S. A new metaheuristic bat-inspired algorithm[ J] . Computer knowledge & technology, 2010, 284: 65-74. 
[16] 潘文超. 果蝇最佳化演算法:最新演化式计算技术 [M] . 台中:沧海书局, 2011.
 [17] MIRJALILI S,LEWIS A. The whale optimization algorithm[ J] . Advances in engineering software,2016,95: 51-67.
 [18] MIRJALILI S,GANDOMI A H,MIRJALILI S Z,et al. Salp swarm algorithm:a bio-inspired optimizer for engineering design problems[ J] . Advances in engineering software,2017,114:163-191.
 [19] HEIDARI A A,MIRJALILI S,FARIS H, et al. Harris hawks optimization:algorithm and applications[ J] . Future generation computer systems,2019,97:849-872.
 [20] 许德刚,赵萍. 蝙蝠算法研究及应用综述[ J] . 计算 机工程与应用,2019,55(15) :1-12,31. 
[21] 李苗苗,王秋萍,惠蕙. 分数阶策略和带有 Lévy 飞 行的螺旋蝙蝠算法[ J] . 计算机工程与应用,2021, 57(18) :75-81. 
[22] 倪昌浩,邹海. 基于改进蝙蝠算法的移动机器人路 径规划方法研究[ J] . 制造业自动化,2021,43( 6) : 53-56,62.
 [23] ESKANDARI S,JAVIDI M M. A novel hybrid bat algorithm with a fast clustering-based hybridization [ J ] . Evolutionary intelligence,2020,13(3) :427-442.
 [24] MUGEMANYI S,QU Z Y,RUGEMA F X,et al. Optimal reactive power dispatch using chaotic bat algorithm [ J] . IEEE access,2020,8:65830-65867. 
[25] CHAKRI A,KHELIF R,BENOUARET M, et al. New directional bat algorithm for continuous optimization problems[ J] . Expert systems with applications,2017, 69:159-175. 
[26] 陈凯镔,陶沙沙,向峻伯,等. 改进 BA 的汽车发动机 DCS 故 障 检 测 优 化 [ J ] . 机 械 设 计 与 制 造, 2020 (10) :176-181. 
[27] 祖宏亮. 基于模糊聚类的图像分割算法研究 [ D] .哈尔滨:哈尔滨理工大学,2020.
 [28] PAN W T. A new fruit fly optimization algorithm:taking the financial distress model as an example [ J ] . Knowledge-based systems,2012,26:69-74.
 [29] 霍慧慧. 果蝇优化算法及其应用研究[ D] . 太原:太 原理工大学,2015. 
[30] 宋杰,许冰,杨淼中. 基于自适应步长果蝇优化算法 图像分割 [ J] . 计 算 机 工 程 与 应 用, 2020, 56 ( 4) : 184-190. 
[31] YUAN X F, DAI X S, ZHAO J Y, et al. On a novel multi-swarm fruit fly optimization algorithm and its application[ J] . Applied mathematics and computation, 2014,233:260-271.
 [32] CHEN C. RWFOA:a random walk-based fruit fly optimization algorithm[ J] . Soft computing,2020,24( 16) : 12681-12690.
 [33] FAN Y,WANG P J,HEIDARI A A,et al. Rationalized fruit fly optimization with sine cosine algorithm:a comprehensive analysis [ J] . Expert systems with applications,2020,157:113486.
 [34] 党建武,谭凌. 改进果蝇算法优化加权极限学习机的 入侵检测[J]. 系统仿真学报,2021,33(2):331-338.
 [35] 信成涛,邹海,盛超,等. 新型果蝇优化算法的最佳 熵阈值图像分割[ J] . 微电子学与计算机,2019,36 (4) :52-56. 
[36] 王涛,RYAD C. 非线性权重和收敛因子的鲸鱼算法 [ J] . 微电子学与计算机,2019,36(1) :11-15. 
[37] 龙文,蔡绍洪,焦建军,等. 求解大规模优化问题的 改进 鲸 鱼 优 化 算 法 [ J ] . 系 统 工 程 理 论 与 实 践, 2017,37(11) :2983-2994.
 [38] FAN Q,CHEN Z J,ZHANG W,et al. ESSAWOA:enhanced whale optimization algorithm integrated with salp swarm algorithm for global optimization[ J] . Engineering with computers,2020,38:797-814.
 [39] ABDEL-BASSET M, CHANG V, MOHAMED R. HSMA_WOA:a hybrid novel slime mould algorithm with whale optimization algorithm for tackling the image segmentation problem of chest X-ray images [ J] . Applied soft computing,2020,95:106642. 
[40] QAIS M H,HASANIEN H M,ALGHUWAINEM S. Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators [ J] . Applied soft computing,2020,86:105937. 
[41] JADHAV A N, GOMATHI N. WGC: hybridization of exponential grey wolf optimizer with whale optimization for data clustering[ J] . Alexandria engineering journal, 2018,57(3) :1569-1584.
[42] MOSTAFA A,HASSANIEN A E,HOUSENI M,et al. Liver segmentation in MRI images based on whale optimization algorithm [ J] . Multimedia tools and applications,2017,76(23) :24931-24954. 
[43] 王斐,贾晓洪,李丽娟,等. 基于樽海鞘群算法的图 像匹配方 法 [ J] . 弹 箭 与 制 导 学 报, 2019, 39 ( 5) : 111-114.
 [44] 陈涛,王梦馨,黄湘松. 基于樽海鞘群算法的无源时 差定 位 [ J ] . 电 子 与 信 息 学 报, 2018, 40 ( 7 ) : 1591-1597.
 [45] 刘森,贾志成,陈雷,等. 基于樽海鞘群体优化非负 矩阵分解的高光谱图像解混算法[ J] . 计算机辅助 设计与图形学学报,2019,31(2) :315-323.
 [46] WU J,NAN R J,CHEN L. Improved salp swarm algorithm based on weight factor and adaptive mutation [ J] . Journal of experimental & theoretical artificial intelligence,2019,31(3) :493-515. 
[47] SHEKHAWAT S S, SHARMA H, KUMAR S, et al. BSSA: binary salp swarm algorithm with hybrid data transformation for feature selection [ J] . IEEE access, 2021,9:14867-14882.
 [48] ABUALIGAH L,SHEHAB M,DIABAT A,et al. Selection scheme sensitivity for a hybrid salp swarm algorithm: analysis and applications [ J ] . Engineering with computers,2020:1-27. 
[49] 马一鸣,石志东,赵康,等. 基于改进哈里斯鹰优化 算法的 TDOA 定位[ J] . 计算机工程,2020,46( 12) : 179-184. 
[50] 贾鹤鸣,康立飞,孙康健,等. 哈里斯鹰算法优化脉 冲耦合神经网络的图像自动分割 [ J] . 应 用 科 技, 2019,46(4) :16-20,25.
 [51] QU C W,HE W,PENG X N,et al. Harris hawks optimization with information exchange[ J] . Applied mathematical modelling,2020,84:52-75.
 [52] DU P,WANG J Z,HAO Y,et al. A novel hybrid model based on multi-objective harris hawks optimization algorithm for daily PM2. 5 and PM10 forecasting [ J] . Applied soft computing,2020,96:106620.
 [53] CHEN H L, JIAO S, WANG M J, et al. Parameters identification of photovoltaic cells and modules using diversification-enriched harris hawks optimization with chaotic drifts[ J] . Journal of cleaner production,2020, 244:118778
Similar References:
Memo

-

Last Update: 2022-05-02
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)