[1] 郝伟,林辉翼,郝旺身,等. 基于全矢稀疏编码的滚动轴承故障识别方法[J]. 郑州大学学报(工学版),2019,40(3):31-35.[2] 李凌均,金兵,马艳丽,等. 基于MEMD与MMSE的滚动轴承退化特征提取方法[J]. 郑州大学学报(工学版),2018,39(4):86-91.
[3] TYAGI S, PANIGRAHI S K. An improved envelope detection method using particle swarm optimisation for rolling element bearing fault diagnosis[J]. Journal of computational design and engineering,2017,4(4):305-317.
[4] KLAUSEN A, ROBBERSMYR K G, KARIMI H R. Autonomous bearing fault diagnosis method based on envelope spectrum[J]. IFAC-PapersOnLine,2017,50(1):13378-13383.[5] CHEGINI S N, BAGHERI A, NAJAFI F. Application of a new EWT-based denoising technique in bearing fault diagnosis[J]. Measurement, 2019,144:275-297.
[6] KUMAR K, SHUKLA S, SINGH S K. A combined approach for weak fault signature extraction of rolling element bearing using Hilbert envelop and zero frequency resonator[J]. Journal of sound and vibration, 2018,419:436-451.
[7] 陈东毅,陈建国,李玉榕. 改进经验模态分解与谱峭度法的步态信号特征分析[J]. 福州大学学报(自然科学版),2019,47(5):630-634.
[8] 田晶,王英杰,刘丽丽,等. 基于Birge-Massart阈值降噪与EEMD及谱峭度的滚动轴承故障特征提取[J].航空动力学报,2019,34(6):1399-1408.
[9] LEI Y G,LIN J,HE Z J,et al. Application of an improved kurtogram method for fault diagnosis of rolling element bearings[J]. Mechanical systems and signal processing,2011,25(5):1738-1749.
[10] LI H, LIU T, WU X,et al. Application of EEMD and improved frequency band entropy in bearing fault feature extraction[J]. ISA transactions,2019,88:170-185.
[11] 李华,刘韬,伍星,等. 基于SVD和熵优化频带熵的滚动轴承故障诊断研究[J].振动工程学报,2018,31(2):358-364.