STATISTICS

Viewed3184

Downloads2231

Bearing Fault Diagnosis Based on Full Vector-CNN
[1]HAO Wangshen,CHEN Yao,SUN Hao,et al.Bearing Fault Diagnosis Based on Full Vector-CNN[J].Journal of Zhengzhou University (Engineering Science),2020,41(05):92-96.[doi:10.13705/j.issn.1671-6833.2020.03.004]
Copy
References:
[1] LEI Y G, LIN J, HE Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J]. Mechanical systems and signal processing, 2013, 35(1/2): 108-126.
[2] 雷文平,吴小龙,陈超宇,等.基于自动编码器和SVM的轴承故障诊断方法[J].郑州大学学报(工学版),2018,39(5):68-72.
[3] 雷亚国,贾峰,周昕,等.基于深度学习理论的机械装备大数据健康监测方法[J].机械工程学报,2015,51(21):49-56.
[4] 郭亮, 高宏力, 张一文, 等. 基于深度学习理论的轴承状态识别研究[J]. 振动与冲击, 2016, 35(12): 166-170, 195.
[5] JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional neural network based fault detection for rotating machinery[J]. Journal of sound and vibration, 2016, 377: 331-345.
[6] CHEN Z Q,LI C,SANCHEZ R V. Gearbox fault identification and classification with convolutional neural networks[J]. Shock and vibration,2015(2):1-10.
[7] 袁建虎,韩涛,唐建,等.基于小波时频图和CNN的滚动轴承智能故障诊断方法[J].机械设计与研究,2017,33(2):93-97.
[8] 管腾飞. 全矢高阶统计量及其在故障诊断中的应用研究[D]. 郑州:郑州大学,2015.
[9] 韩捷,石来德.全矢谱技术及工程应用[M].北京:机械工业出版社,2008:65-70.
[10] 张伟. 基于卷积神经网络的轴承故障诊断算法研究[D]. 哈尔滨:哈尔滨工业大学,2017.
[11] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[M/OL]. Cambridge, MA:MIT Press, 2016[2019-05-07]. http://www.deeplearningbook.org.
Similar References:
Memo

-

Last Update: 2020-10-23
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)