STATISTICS

Viewed3172

Downloads2008

Hierarchical Path Planning Method for Mobile Robots Based on Hybrid Genetic Particle Swarm Optimization Algorithm
[1]OUYANG Haibin,QUAN Yongbin,GAO Liqun,et al.Hierarchical Path Planning Method for Mobile Robots Based on Hybrid Genetic Particle Swarm Optimization Algorithm[J].Journal of Zhengzhou University (Engineering Science),2020,41(04):34-40.[doi:10.13705/j.issn.1671-6833.2020.01.011]
Copy
References:
[1] 海星朔,徐炳辉,任羿,等.基于改进鸽群优化的机器人自抗扰控制方法[J].郑州大学学报(工学版),2019,40(4):20-24,31.
[2] NEUS M,MAOUCHE S.Motion planning using the modified visibility graph[C]//Proceedings of 1999 IEEE International Conference on Systems,Man,and Cybernetics.Tokyo,IEEE:1999:651-655.
[3] PANOV A I,YAKOVLEV K S,SUVOROV R.Grid path planning with deep reinforcement learning:preliminary results[J].Procedia computer science,2018,123:347-353.
[4] GHITA N,KLOETZER M.Trajectory planning for a car-like robot by environment abstraction[J].Robotics and autonomous systems,2012,60(4):609-619.
[5] MO H W,XU L F.Research of biogeography particle swarm optimization for robot path planning[J].Neurocomputing,2015,148:91-99.
[6] 郗安民,王琦,孙学彬.一种有效的地图创建方法和机器人的路径规划[J].机械设计,2010,27(1):35-37.
[7] HOU P Q,PAN H,GUO C.Simulation research for mobile robot path planning based on improved artificial potential field method recommended by the AsiaSim[J].International journal of modeling,simulation,and scientific computing,2017,8(2):1-14.
[8] PAN Q Y,WANG X Y.Independent travel recommendation algorithm based on analytical hierarchy process and simulated annealing for professional tourist[J].Applied intelligence,2018,48(6):1565-1581.
[9] 陶重犇,雷祝兵,李春光,等.基于改进模拟退火算法的搬运机器人路径规划[J].计算机测量与控制,2018,26(7):182-185.
[10] JIAO Z Q,MA K,RONG Y L,et al.A path planning method using adaptive polymorphic ant colony algorithm for smart wheelchairs[J].Journal of computational science,2018,25:50-57.
[11] HUANG L P,ZHANG B,YUAN X,et al.A novel Bi-Ant colony optimization algorithm for solving multi-objective service selection problem[J].Journal of intelligent and fuzzy systems,2016,31(2):873-884.
[12] XU D P,SHAO H M,ZHANG H S.A new adaptive momentum algorithm for split-complex recurrent neural networks[J].Neurocomputing,2012,93:133-136.
[13] 王雷,李明.改进自适应遗传算法在移动机器人路径规划中的应用[J].南京理工大学学报,2017,41(5):627-633.
[14] EBERHART R C,KENNEDY J.Particle swarm intelligence[C]//Proceedings of the IEEE International Conference on Neural Networks.Perth:IEEE,1995:1942-1948.
[15] LI G S,CHOU W S.Path planning for mobile robot using self-adaptive learning particle swarm optimization[J].Science china information sciences,2018,61:1-18.
[16] HOLLAND J H.Adaptation in natural and artificial systems[M].Ann Arbor:University of Michigan Press,1975.
[17] ZUO L,GUO Q,XU X,et al.A hierarchical path planning approach based on A* and least-squares policy iteration for mobile robots[J].Neurocomputing,2015,170(25):257-266.[18] YANG X,MOALLEM M,PATEL R V.A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation[J].IEEE transactions on systems,man,and cybernetics,part B (cybernetics),2005,35(6):1214-1224.
[19] MAC T T,COPOT C,TRAN D T,et al.A hierarchical global path planning approach for mobile robots based on multi-objective particle swarm optimization[J].Applied soft computing,2017,59:68-76.
[20] 范柄尧,张春美.移动机器人路径规划的混合差分进化算法[J].太原科技大学学报,2019,40(1):6-12.
Similar References:
Memo

-

Last Update: 2020-10-06
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)