STATISTICS

Viewed1834

Downloads1073

A Review of Methods and Applications for Fluid Topology Optimization
[1]WANG Dingbiao,WANG Shuai,ZHANG Haoran,et al.A Review of Methods and Applications for Fluid Topology Optimization[J].Journal of Zhengzhou University (Engineering Science),2023,44(02):1-13.[doi:10.13705/j.issn.1671-6833.2023.02.021]
Copy
References:
[1] BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method [ J] . Computer Methods in Applied Mechanics and Engineering, 1988, 71(2) : 197-224.
[2] BORRVALL T, PETERSSON J. Topology optimization of fluids in Stokes flow[ J] . International Journal for Numerical Methods in Fluids, 2003, 41(1) : 77-107.
[3] HAERTEL J H K, ENGELBRECHT K, LAZAROV B S, et al. Topology optimization of a pseudo 3D thermofluid heat sink model [ J ] . International Journal of Heat and Mass Transfer, 2018, 121: 1073-1088.
[4] LUNDGAARD C, ALEXANDERSEN J, ZHOU M D, et al. Revisiting density-based topology optimization for fluid-structure-interaction problems[ J] . Structural and Multidisciplinary Optimization, 2018, 58(3) : 969-995.
[5] SUN S C, LIEBERSBACH P, QIAN X P. Large scale 3D topology optimization of conjugate heat transfer[ C] / / 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems ( ITherm) . Piscataway:IEEE, 2019: 1-6. 
[6] ZENG T, WANG H,YANG M Z,et al. Topology optimization of heat sinks for instantaneous chip cooling using a transient pseudo-3D thermofluid model[ J] . International Journal of Heat and Mass Transfer, 2020, 154: 119681.
[7] KUMAR P, LANGELAAR M. Topological synthesis of flidic pressure-actuated robust compliant mechanisms [ J ]. Mechanism and Machine Theory, 2022, 174: 104871.
[8] ALEXANDERSEN J. A detailed introduction to densitybased topology optimisation of fluid flow problems with implementation in MATLAB[EB / OL]. (2022-07-19)[2022 -10-11]https: / / doi. org / 10. 48550 / arXiv. 2207. 13695
 [9] KUMAR P. Towards topology optimization of pressuredriven soft robots [ C] / / Conference on Mechanisms and Machine Science . Cham:Springer,2022:19-30. 
[10] KREISSL S, PINGEN G, MAUTE K. Optimal layout design for unsteady flows [ C] / / 13th AIAA / ISSMO Multidisciplinary Analysis Optimization Conference. Reston: AIAA, 2010: 9400.
 [11] DENG Y, LIU Z, ZHANG P, et al. Topology optimization of unsteady incompressible Navier-Stokes flows [ J] . Journal of Computational Physics, 2011, 230(17) : 6688 -6708.
[12] PINGEN G, MAUTE K. Optimal design for non-Newtonian flows using a topology optimization approach [ J ] . Computers & Mathematics With Applications, 2010, 59 (7) : 2340-2350. 
[13] MATSUMORI T, KONDOH T, KAWAMOTO A, et al. Topology optimization for fluid-thermal interaction problems under constant input power[ J] . Structural and Multidisciplinary Optimization, 2013, 47(4) : 571-581.
 [14] ALEXANDERSEN J, AAGE N, ANDREASEN C S, et al. Topology optimisation for natural convection problems [ J] . International Journal for Numerical Methods in Fluids, 2014, 76(10) : 699-721. 
[15] LIU G, GEIER M, LIU Z Y, et al. Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method[ J] . Computers & Mathematics with Applications, 2014, 68 ( 10 ) : 1374-1392. 
[16] ZHOU S, LI Q. A variational level set method for the topology optimization of steady-state Navier-Stokes flow [ J] . Journal of Computational Physics, 2008, 227(24) : 10178-10195.
 [17] CHALLIS V J, GUEST J K. Level set topology optimization of fluids in Stokes flow[ J] . International Journal for Numerical Methods in Engineering, 2009, 79(10) : 1284 -1308. 
[18] DUAN XIAN BAO, QIAN FU CAI, QIN XIN QIANG. Level set method for topological optimization of the naiverstokes fluid flow[ J] . Applied Mechanics and Materials, 2012, 182 / 183: 1668-1672. 
[19] DENG Y B, ZHANG P, LIU Y S, et al. Optimization of unsteady incompressible Navier-Stokes flows using variational level set method[ J] . International Journal for Nmerical Methods in Fluids, 2013, 71(12) : 1475-1493. 
[20] DUAN X B, DANG Y, LU J X. A variational level set method for topology optimization problems in navier-stokes flow[ J] . IEEE Access, 2020, 8: 48697-48706.
 [21] NEOFYTOU A, YU F M, ZHANG L, et al. Level set topology optimization for fluid-structure interactions [ C] / / AIAA SCITECH 2022 Forum. Reston: AIAA, 2022: 2091. 
[22] OSHER S, SETHIAN J A. Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations [ J ] . Journal of Computational Physics, 1988, 79(1) : 12-49.
 [23] YONEKURA K, KANNO Y. Topology optimization method for interior flow based on transient information of the lattice Boltzmann method with a level-set function [ J] . Japan Journal of Industrial and Applied Mathematics, 2017, 34(2) : 611-632. 
[24] VILLANUEVA C H, MAUTE K. CutFEM topology optimization of 3D laminar incompressible flow problems[ J] . Computer Methods in Applied Mechanics and Engineering, 2017, 320: 444-473.
 [25] ZHANG B, LIU X M. Topology optimization study of arterial bypass configurations using the level set method [ J ] . Structural and Multidisciplinary Optimization, 2015, 51(3) : 773-798.
 [26] ZHANG B, LIU X M, SUN J J. Topology optimization design of non-Newtonian roller-type viscous micropumps [ J ] . Structural and Multidisciplinary Optimization, 2016, 53(3) : 409-424. 
[27] JENKINS N, MAUTE K. An immersed boundary approach for shape and topology optimization of stationary fluid-structure interaction problems [ J ] . Structural and Multidisciplinary Optimization, 2016, 54 ( 5 ) : 1191 -1208.
 [28] QUERIN O M, STEVEN G P, XIE Y M. Evolutionary structural optimisation ( ESO) using a bidirectional algorithm[ J ] . Engineering Computations, 1998, 15 ( 8 ) : 1031-1048. 
[29] YANG X Y, XIE Y M, STEVEN G P, et al. Bidirectional evolutionary method for stiffness optimization [ J ] . AIAA Journal, 1999, 37(11) : 1483-1488. 
[30] 谢亿 民, 黄 晓 东, 左 志 豪, 等. 渐 进 结 构 优 化 法 (ESO)和双 向 渐 进 结 构 优 化 法 ( BESO) 的 近 期 发 展 [ J] . 力学进展, 2011, 41(4) : 462-471. 
XIE Y M, HUANG X D, ZUO Z H, et al. Recent developments of evolutionary structural optimization ( ESO ) and bidirectional evolutionary structural optimization (BESO) methods [ J ] . Advances in Mechanics, 2011, 41 (4) : 462-471.
 [31] ROZVANY G I N. A critical review of established methods of structural topology optimization[ J] . Structural and Multidisciplinary Optimization, 2009, 37(3) : 217-237.
 [32] CUI N N, HUANG S P, DING X Y. An improved strategy for genetic evolutionary structural optimization [ J ] . Advances in Civil Engineering, 2020, 2020: 1-9. 
[33] ZHUANG Z, XIE Y M, LI Q,et al. Body-fitted bi-directional evolutionary structural optimization using nonlinear diffusion regularization [ J ] . Computer Methods in Applied Mechanics and Engineering, 2022, 396: 115114. 
[34] PICELLI R, VICENTE W M, PAVANELLO R. Evolutionary topology optimization for structural compliance minimization considering design-dependent FSI loads[ J]. Finite Elements in Analysis and Design, 2017, 135: 44-55.
 [35] SUI Y, PENG X. The improvement for the ICM method of structural topology optimization [ J] . Acta Mechanica Sinica, 2005, 37(2) :190-198.
 [36] LONG K, WANG X, GU X G. Concurrent topology optimization for minimization of total mass considering loadcarrying capabilities and thermal insulation simultaneously [ J] . Acta Mechanica Sinica, 2018, 34(2) : 315-326. 
[37] LI X, ZHAO Q, LONG K, et al. Multi-material topology optimization of transient heat conduction structure with functional gradient constraint[ J] . International Communications in Heat and Mass Transfer, 2022, 131: 105845.
 [38] YE H L, LI Y M, ZHANG Y M, et al. Fluid-structure interaction dynamics for laminated plate \ shell topology optimization [ J ] . Applied Mechanics and Materials, 2013, 444 / 445: 55-59. 
[39] YOON G H. Topology optimization for turbulent flow with Spalart-Allmaras model [ J ] . Computer Methods in Applied Mechanics and Engineering, 2016, 303: 288-311. 
[40] DILGEN C B, DILGEN S B, FUHRMAN D R,et al. Topology optimization of turbulent flows [ J ] . Computer Methods in Applied Mechanics and Engineering, 2018, 331: 363-393.
 [41] TAWK R, GHANNAM B, NEMER M. Topology optimization of heat and mass transfer problems in two fluids— one solid domains[ J] . Numerical Heat Transfer, Part B: Fundamentals, 2019, 76(3) : 130-151.
 [42] MEKKI B S, LANGER J, LYNCH S. Genetic algorithm based topology optimization of heat exchanger fins used in aerospace applications[ J] . International Journal of Heat and Mass Transfer, 2021, 170: 121002. 
[43] PIETROPAOLI M, GAYMANN A, MONTOMOLI F. Three-dimensional fluid topology optimization and validation of a heat exchanger with turbulent flow [ EB / OL ] (2021 - 01 - 11) [ 2022 - 09 - 16 ]. https: / / doi. org / 10. 1115 / GT2020-14479.  
[44] KONTOLEONTOS E A, PAPOUTSIS-KIACHAGIAS E M, ZYMARIS A S, et al. Adjoint-based constrained topology optimization for viscous flows, including heat transfer[ J ] . Engineering Optimization, 2013, 45 ( 8 ) : 941-961.
 [45] COFFIN P, MAUTE K. A level-set method for steadystate and transient natural convection problems [ J ] . Structural and Multidisciplinary Optimization, 2016, 53 (5) : 1047-1067. 
[46] LIN Y, ZHU W D, LI J X, et al. A stabilized parametric level-set XFEM topology optimization method for thermalfluid problem [ J ] . International Journal for Numerical Methods in Engineering, 2022, 123(4) : 924-952. 
[47] YAJI K, YAMADA T, YOSHINO M, et al. A level setbased topology optimization using the lattice-boltzmann method[ J ] . Transactions of The Japan Society of Mechanical Engineers Series C, 2013, 79 ( 802 ) : 2152 -2163.
 [48] KENTARO Y, TAKAYUKI Y, MASATO Y, et al. Topology optimization in thermal-fluid flow using the lattice Boltzmann method[ J] . Journal of Computational Physics, 2016, 307: 355-377. 
[49] SEBASTIAN N, OLE S, BOYAN L et al. Topology optimization of unsteady flow problems using the lattice Boltzmann method [ J ] . Journal of Computational Physics, 2016, 307: 291-307.
 [50] FLORIAN D, YANN F, CHRISTOPHE J et al. Topology optimization of thermal fluid flows with an adjoint Lattice Boltzmann Method [ J] . Journal of Computational Physics, 2018, 365: 376-404. 
[51] KLEMENS F, FORSTER B, DORN M,et al. Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods [ J] . Computers & Mathematics with Applications, 2020, 79(1) : 17-33. 
[52] PINGEN G, WAIDMANN M, EVGRAFOV A, et al. A parametric level-set approach for topology optimization of flow domains [ J] . Structural and Multidisciplinary Optimization, 2010, 41(1) : 117-131. 
[53] YODONO T, YAJI K, YAMADA T, et al. Topology optimization for the elastic field using the lattice Boltzmann method [ J ] . Computers & Mathematics with Applications, 2022, 110: 123-134. 
[54] FLIEGE J, VAZ A I F. A method for constrained multiobjective optimization based on SQP techniques[ J] . SIAM Journal on Optimization, 2016, 26(4) : 2091-2119. 
[55] ZHOU M D, ALEXANDERSEN J, SIGMUND O, et al. Industrial application of topology optimization for combined conductive and convective heat transfer problems [ J ] . Structural and Multidisciplinary Optimization, 2016, 54(4) : 1045-1060.
[56] SAVIERS K R, RANJAN R, MAHMOUDI R. Design and validation of topology optimized heat exchangers [ C ] / / AIAA Scitech 2019 Forum. California. Reston: AIAA, 2019: 1465. 
[57] CAO X J, WANG Y F. Optimized design of thermal insulation and fluid drag reduction for circumferentially grooved annular seal with MMA and perturbation methods [ J ] . Structural and Multidisciplinary Optimization, 2020, 62(2) : 873-914. 
[58] SASAKI Y, SATO Y, YAMADA T, et al. Topology optimization for fluid flows using the MPS method incorporating the level set method [ J ] . Computers & Fluids, 2019, 188: 86-101.
 [59] YOSHIMURA M, SHIMOYAMA K, MISAKA T, et al. Topology optimization of fluid problems using genetic algorithm assisted by the Kriging model [ J] . International Journal for Numerical Methods in Engineering, 2017, 109 (4) : 514-532. 
[60] SIGMUND O. On the usefulness of non-gradient approaches in topology optimization [ J] . Structural and Multidisciplinary Optimization, 2011, 43(5) : 589-596.
 [61] DEDE E M. Optimization and design of a multipass branching microchannel heat sink for electronics cooling [ J ] . Journal of Electronic Packaging, 2012, 134 (4) : 041001.
 [62] 裴元帅, 王定标, 王光辉, 等. 恒定压降下电子元件 热沉 的 拓 扑 优 化 设 计 [ J] . 低 温 与 超 导, 2020, 48 (1) : 56-61. 
PEI Y S, WANG D B, WANG G H, et al. Topology optimization design of electronic component heat sink under constant pressure drop[ J] . Cryogenics & Superconductivity, 2020, 48(1) : 56-61.
 [63] 李含灵, 蓝代彦, 张显明, 等. 自然对流散热齿的拓扑 优化[J]. 工程热物理学报, 2022, 43(5): 1357-1361. 
LI H L, LAN D Y, ZHANG X M, et al. Topology optimization of the natural convection fin heat sink[ J] . Journal of Engineering Thermophysics, 2022, 43 ( 5) : 1357 -1361.
 [64] ZOU A, CHUAN R, QIAN F, et al. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier[ J] . Applied Thermal Engineering, 2022, 207: 118128. 
[65] YODONO T, YAJI K, YAMADA T. Pseudo 3D topology optimization of microchannel heat sink with an auxiliary objective [ J ] . International Journal of Heat and Mass Transfer, 2022, 187: 122526. 
[66] GAYMANN A, MONTOMOLI F, PIETROPAOLI M. Fluid topology optimization: bio-inspired valves for air- 第 2 期 王定标,等:流体拓扑优化的方法及应用综述 13 craft engines[ J] . International Journal of Heat and Fluid Flow, 2019, 79: 108455. 
[67] MUNK D J, VERSTRAETE D, VIO G A. Effect of fluidthermal-structural interactions on the topology optimization of a hypersonic transport aircraft wing[ J] . Journal of Fluids and Structures, 2017, 75: 45-76. 
[68] ORBAY R, TOKAT A, BECCIANI M, et al. Multiobjectively optimized PMSynRM cooling for increased vehicle efficiency[C] / / 47th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE, 2021: 1-6.
 [69] HOGHOJ L C, NORHAVE D R, ALEXANDERSEN J, et al. Topology optimization of two fluid heat exchangers [ J] . International Journal of Heat and Mass Transfer, 2020, 163: 120543.
 [70] KOBAYASHI H, YAJI K, YAMASAKI S, et al. Topology design of two-fluid heat exchange[ J] . Structural and Multidisciplinary Optimization, 2021, 63(2) : 821-834. 

[71] LIU A, WANG G, WANG D,et al. Study on the thermal and hydraulic performance of fin-and-tube heat exchanger based on topology optimization[ J] . Applied Thermal Engineering, 2021, 197: 117380.
Similar References:
Memo

-

Last Update: 2023-02-25
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)