STATISTICS

Viewed1255

Downloads981

Variable Admittance Control of Upper Limb Rehabilitation Robot Based on Fuzzy Control
[1]GAO Jianshe,LIU Luqi,WANG Jie,et al.Variable Admittance Control of Upper Limb Rehabilitation Robot Based on Fuzzy Control[J].Journal of Zhengzhou University (Engineering Science),2024,45(01):12-20.[doi:10.13705/j.issn.1671-6833.2024.01.002]
Copy
References:
[1] HARA Y. Brain plasticity and rehabilitation in stroke patients[J].Journal of Nippon Medical School, 2015, 82(1): 4-13.
[2] ZUO S P, LI J F, DONG M J, et al. Optimum design and preliminary experiments of a novel parallel end traction apparatus for upper-limb rehabilitation[J].Frontiers of Mechanical Engineering, 2021, 16(4): 726-746.
[3] AGGOGERI F, MIKOLAJCZYK T, O′KANE J. Robotics for rehabilitation of hand movement in stroke survivors[J].Advances in Mechanical Engineering, 2019, 11(4): 1-14.
[4] TURNER D L, TANG X J, WINTERBOTHAM W, et al. Recovery of submaximal upper limb force production is correlated with better arm position control and motor impairment early after a stroke[J].Clinical Neurophysiology, 2012, 123(1): 183-192.
[5] WANG S S, LIAO J, YONG Z R, et al. Inertial sensor-based upper limb rehabilitation auxiliary equipment and upper limb functional rehabilitation evaluation[C]∥CCF Conference on Computer Supported Cooperative Work and Social Computing. Cham: Springer, 2022: 518-528.
[6] CALANCA A, MURADORE R, FIORINI P. A review of algorithms for compliant control of stiff and fixed-comp-liance robots[J].IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 613-624.
[7] HOGAN N. Impedance control: an approach to manipulation[J].Journal of Dynamic Systems, Measurement, and Control,1985,107:1-7.
[8] BAI J, SONG A G, WANG T, et al. A novel backstepping adaptive impedance control for an upper limb rehabilitation robot[J].Computers &Electrical Engineering, 2019, 80: 1-13.
[9] SADO F, SIDEK S N, YUSOF H M. Adaptive hybrid impedance control for a 3DOF upper limb rehabilitation robot using hybrid automata[C]∥2014 IEEE Conference on Biomedical Engineering and Sciences (IECBES). Piscataway: IEEE, 2014: 596-601.
[10] RAGHAVAN P. Upper limb motor impairment after stroke[J].Physical Medicine and Rehabilitation Clinics of North America, 2015, 26(4): 599-610.
[11] 吴青聪, 王兴松, 吴洪涛, 等. 上肢康复外骨骼机器人的模糊滑模导纳控制[J].机器人, 2018, 40(4): 457-465.WU Q C, WANG X S, WU H T, et al. Fuzzy sliding mode admittance control of the upper limb rehabilitation exoskeleton robot[J].Robot, 2018, 40(4): 457-465.
[12] AGUIRRE-OLLINGER G, COLGATE J E, PESHKIN M A, et al. Active-impedance control of a lower-limb assistive exoskeleton[C]∥2007 IEEE 10th International Conference on Rehabilitation Robotics. Piscataway: IEEE, 2007: 188-195.
[13] 乐宇倚, 郭帅. 基于变导纳控制的上肢康复机器人柔顺控制方法研究[J].工业控制计算机, 2021, 34(10): 9-11, 14.LE Y Y, GUO S. Research on compliance control method of upper-limb rehabilitation robot based on variable admittance control[J].Industrial Control Computer, 2021, 34(10): 9-11, 14.
[14] 梁旭, 王卫群, 苏婷婷, 等. 下肢康复机器人的主动柔顺自适应交互控制[J].机器人, 2021, 43(5): 547-556.LIANG X, WANG W Q, SU T T, et al. Active compliant and adaptive interaction control for a lower limb rehabilitation robot[J].Robot, 2021, 43(5): 547-556.
[15] LI X M, YANG Q Q, SONG R. Performance-based hybrid control of a cable-driven upper-limb rehabilitation robot[J].IEEE Transactions on Biomedical Engineering, 2021, 68(4): 1351-1359.
[16] 高建设, 王玉闯, 刘德平, 等. 新型四足步行机器人串并混联腿的轨迹规划与仿真研究[J].郑州大学学报(工学版), 2018, 39(2): 23-27, 38.GAO J S, WANG Y C, LIU D P, et al. Research on trajectory planning and simulation on the serial-parallel leg of a novel quadruped walking robot[J].Journal of Zhengzhou University (Engineering Science), 2018, 39(2): 23-27, 38.
[17] 李朋阳, 高建设, 顾昌利. 一种串并混联的上肢康复机器人轨迹规划研究[J].机械设计与制造, 2022(6): 265-269, 273.LI P Y, GAO J S, GU C L. Research on the trajectory planning of a series-parallel upper limb rehabilitation robot[J].Machinery Design &Manufacture, 2022(6): 265-269, 273.
[18] SERAJI H, COLBAUGH R. Force tracking in impedance control[J].International Journal of Robotics Research, 1997, 16(1): 97-117.
[19] 檀盼龙, 李益敏, 赵相宾, 等. 线性扩张状态观测滤波器的分析与应用[J].郑州大学学报(工学版), 2019, 40(2): 41-47.TAN P L, LI Y M, ZHAO X B, et al. Analysis and application of linear extended state observer filter[J].Journal of Zhengzhou University (Engineering Science), 2019, 40(2): 41-47.
[20] 赵相瑜, 缪志农. 模糊自适应控制中的参数调节[J].中国测试技术, 2004, 30(4): 24-26.ZHAO X Y, MIAO Z L. Parameters adjusting of adaptive fuzzy control[J].China Measurement Technology, 2004, 30(4): 24-26.
[21] BOSECKER C, DIPIETRO L, VOLPE B, et al. Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke[J].Neurorehabilitation and Neural Repair, 2010, 24(1): 62-69.
[22] 胡寿松. 自动控制原理[M].6版. 北京: 科学出版社, 2013: 71-88.HU S S. Principle of automatic control[M].6th ed. Beijing: Science Press, 2013: 71-88.
[23] SUZUKI K, MIZUSHIMA S. Rehabilitation technology[M].New York: Elsevier, 1987: 432-694.
[24] LIU C G, HE Y, CHEN X A, et al. Discontinuous force-based robot adaptive switching update rate impedance control[C]∥2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). Piscataway: IEEE, 2021: 2573-2580.
Similar References:
Memo

-

Last Update: 2024-01-23
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)