STATISTICS

Viewed932

Downloads1003

Coefficient Optimization of Grinding Force Model Based on Genetic Algorithm
[1]WANG Dong,ZHANG Zhipeng,ZHAO Rui,et al.Coefficient Optimization of Grinding Force Model Based on Genetic Algorithm[J].Journal of Zhengzhou University (Engineering Science),2024,45(01):21-28.[doi:10.13705/j.issn.1671-6833.2023.04.010]
Copy
References:
[1] PATNAIK DURGUMAHANTI U S, SINGH V, VENKATESWARA RAO P. A new model for grinding force prediction and analysis[J]. International Journal of Machine Tools and Manufacture, 2010, 50(3): 231-240.
[2] MAENG S J, LEE P A, KIM B H, et al. An analytical model for grinding force prediction in ultra-precision machining of WC with PCD micro grinding tool[J]. International Journal of Precision Engineering and Manufactu-ring-Green Technology, 2020, 7(6): 1031-1045.
[3] ZHOU H, DING W F, LI Z, et al. Predicting the grin-ding force of titanium matrix composites using the genetic algorithm optimizing back-propagation neural network model[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(4): 1157-1167.
[4] 詹友基, 左振, 许永超, 等. 纳米晶硬质合金的磨削力实验与预测[J]. 材料与冶金学报, 2022, 21(6): 448-455.ZHAN Y J, ZUO Z, XU Y C, et al. Experiment and prediction of grinding force of nanosized cemented carbide[J]. Journal of Materials and Metallurgy, 2022, 21(6): 448-455.
[5] LI B K, DAI C W, DING W F, et al. Prediction on grinding force during grinding powder metallurgy nickel-based superalloy FGH96 with electroplated CBN abrasive wheel[J]. Chinese Journal of Aeronautics, 2021, 34(8): 65-74.
[6] 马少奇. 18CrNiMo7-6钢外圆磨削力及表面完整性研究[D]. 郑州: 郑州大学, 2021.MA S Q. Research on grinding force and surface integrity of 18CrNiMo7-6 steel in cylindrical grinding[D]. Zhengzhou: Zhengzhou University, 2021.
[7] JAMSHIDI H, GURTAN M, BUDAK E. Identification of active number of grits and its effects on mechanics and dynamics of abrasive processes[J]. Journal of Materials Processing Technology, 2019, 273: 116239.
[8] KOVA et al. Cutting force during grinding determined by regression analysis and genetic algorithms[J]. Key Engineering Materials, 2016, 686: 13-18.
[9] GUO M X, LI B Z, DING Z S, et al. Empirical modeling of dynamic grinding force based on process analysis[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9): 3395-3405.
[10] MISHRA V K, SALONITIS K. Empirical estimation of grinding specific forces and energy based on a modified Werner grinding model[J]. Procedia CIRP, 2013, 8: 287-292.[11] SU Y H, LIN B, CAO Z C. Prediction and verification analysis of grinding force in the single grain grinding process of fused silica glass[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(1): 597-606.
[12] AMAMOU R, BEN FREDJ N, FNAIECH F. Improved method for grinding force prediction based on neural network[J]. The International Journal of Advanced Manufacturing Technology, 2008, 39(7/8): 656-668.
[13] 赵静雯. 圆柱形疲劳试样V型缺口成形磨削工艺优化研究[D]. 郑州: 郑州大学, 2022.ZHAO J W. Optimization study on cylindrical fatigue specimen V-notch of forming grinding process[D]. Zhengzhou: Zhengzhou University, 2022.
[14] 蔡卫星, 周伟华, 张峰. 21NiCrMo5H齿轮钢超声磨削力建模研究[J]. 现代制造工程, 2020(4): 113-118.CAI W X, ZHOU W H, ZHANG F. Research on the grinding force model of ultrasonic grinding for 21NiCrMo5H[J]. Modern Manufacturing Engineering, 2020(4): 113-118.
[15] 赵庆岩, 黎杰, 吴顺, 等. 基于遗传算法优化的机械臂动态矩阵预测控制[J]. 郑州大学学报(工学版), 2020, 41(1): 32-37.ZHAO Q Y, LI J, WU S, et al. Dynamic matrix predictive control of manipulators based on genetic algorithms[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(1): 32-37.
[16] 秦娜, 刘凡, 刘亚龙, 等. 基于遗传算法优化BP神经网络的钛合金旋转超声磨削力预测[J]. 中国科技论文, 2017, 12(10): 1128-1131, 1156.QIN N, LIU F, LIU Y L, et al. Prediction of grinding force in rotary ultrasonic grinding of titanium alloy based on BP neural network optimized by genetic algorithm[J]. China Sciencepaper, 2017, 12(10): 1128-1131, 1156.
[17] 欧阳海滨, 全永彬, 高立群, 等. 基于混合遗传粒子群优化算法的层次路径规划方法[J]. 郑州大学学报(工学版), 2020, 41(4): 34-40.OUYANG H B, QUAN Y B, GAO L Q, et al. Hierarchical path planning method for mobile robots based on hybrid genetic particle swarm optimization algorithm[J]. Journal of Zhengzhou University (Engineering Science), 2020, 41(4): 34-40.
[18] 张翔, 王应刚, 陈泓谕, 等. 基于BP神经网络与遗传算法的固结磨具制作工艺参数优化[J]. 表面技术, 2022, 51(2): 358-366.ZHANG X, WANG Y G, CHEN H Y, et al. Optimization of fixed-abrasive tool development parameters based on BP neural network and genetic algorithm[J]. Surface Technology, 2022, 51(2): 358-366.
Similar References:
Memo

-

Last Update: 2024-01-23
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)