STATISTICS

Viewed1479

Downloads1096

Intelligent Detection and Identification of Broadband Signals Based on Time-frequency Map Cutting
[1]HAN Gangtao,MA uipeng,WU Di.Intelligent Detection and Identification of Broadband Signals Based on Time-frequency Map Cutting[J].Journal of Zhengzhou University (Engineering Science),2023,44(03):44-51.[doi:10.13705/j.issn.1671-6833.2023.03.008]
Copy
References:
[1] 潘宝凤. 通信侦察系统总体设计技术[J]. 电讯技术, 2011, 51(6): 1-5.PAN B F. Overall design of communication reconnaissance system[J]. Telecommunication Engineering, 2011, 51(6): 1-5.
[2] DIAMANT R. Closed form analysis of the normalized matched filter with a test case for detection of underwater acoustic signals[J]. IEEE Access, 2016, 4: 8225-8235.
[3] GARDNER W A. Exploitation of spectral redundancy in cyclostationary signals[J]. IEEE Signal Processing Magazine, 1991, 8(2): 14-36.
[4] ZENG Y H, LIANG Y C. Spectrum-sensing algorithms for cognitive radio based on statistical covariances[J]. IEEE Transactions on Vehicular Technology, 2009, 58(4): 1804-1815.
[5] NIKONOWICZ J, JESSA M. A novel method of blind signal detection using the distribution of the bin values of the power spectrum density and the moving average[J]. Digital Signal Processing, 2017, 66: 18-28.
[6] HUANG H, LI J Q, WANG J, et al. FCN-based carrier signal detection in broadband power spectrum[J]. IEEE Access, 2020, 8: 113042-113051.
[7] PRASAD K N R S V, DSOUZA K B, BHARGAVA V K, et al. A deep learning framework for blind time-frequency localization in wideband systems[C]∥2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). Piscataway: IEEE, 2020: 1-6.
[8] ZHA X, PENG H, QIN X, et al. A deep learning framework for signal detection and modulation classification[J]. Sensors (Basel, Switzerland), 2019, 19(18): 4042.
[9] LI R D, HU J H, LI S Q, et al. Blind detection of communication signals based on improved YOLO3[C]∥6th International Conference on Intelligent Computing and Signal Processing (ICSP). Piscataway: IEEE, 2021: 424-429.
[10] 李润东. 基于深度学习的通信信号智能盲检测与识别技术研究[D]. 成都: 电子科技大学, 2021.LI R D. Research on intelligent blind detection and recognition of communication signals based on deep learning[D]. Chengdu: University of Electronic Science and Technology of China, 2021.
[11] 单倩文, 郑新波, 何小海, 等. 基于改进多尺度特征图的目标快速检测与识别算法[J]. 激光与光电子学进展, 2019, 56(2): 021002.SHAN Q W, ZHENG X B, HE X H, et al. Fast object detection and recognition algorithm based on improved multi-scale feature maps[J]. Laser &Optoelectronics Progress, 2019, 56(2): 021002.
[12] 幸晨杰. 基于深度神经网络的宽带信号频谱检测方法及其后处理流程设计[J]. 电子质量, 2021(7): 126-131.XING C J. A wideband signal spectrum detection method based on deep neural network and its post-processing workflow[J]. Electronics Quality, 2021(7): 126-131.
[13] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2022-10-01].https:∥arxiv.org/pdf/1704.04861.pdf.
[14] ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8): 8574-8586.
[15] ZHANG Y F, REN W Q, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.[16] 薛均晓, 武雪程, 王世豪, 等. 基于改进YOLOv4的自然人群口罩佩戴检测方法[J]. 郑州大学学报(工学版), 2022, 43(4): 16-22.XUE J X, WU X C, WANG S H, et al. A method on mask wearing detection of natural population based on improved YOLOv4[J]. Journal of Zhengzhou University (Engineering Science), 2022, 43(4): 16-22.
[17] SOLOVYEV R, WANG W M, GABRUSEVA T. Weighted boxes fusion: ensembling boxes from different object detection models[J]. Image and Vision Computing, 2021, 107: 104117.
[18] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. Scaled-YOLOv4: scaling cross stage partial network[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway:IEEE, 2021: 13024-13033.
[19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[EB/OL].(2020-10-11)[2022-10-01]. https:∥arxiv.org/abs/2004.10934.
Similar References:
Memo

-

Last Update: 2023-05-08
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)