Multistep Prediction of Wind Speed Based on Grey Wolf Algorithm and Extreme Learning Machine
[1]ZHANG Wenyu,MA Keke,GUO Zhenhai,et al.Multistep Prediction of Wind Speed Based on Grey Wolf Algorithm and Extreme Learning Machine[J].Journal of Zhengzhou University (Engineering Science),2024,45(02):89-96.[doi:10.13705/j.issn.1671-6833.2026.05.008]
[1] ZHAO W G, WEI Y M, SU Z Y. One day ahead wind speed forecasting: a resampling-based approach[J]. Applied Energy, 2016, 178: 886-901.
[2] XU Y Y, YANG G K, LUO J L, et al. A multi-location short-term wind speed prediction model based on spatiotemporal joint learning[J]. Renewable Energy, 2022, 183: 148-159.
[3] XU W F, LIU P, CHENG L, et al. Multi-step wind speed prediction by combining a WRF simulation and an error correction strategy[J]. Renewable Energy, 2021, 163: 772-782.
[4] WANG Y, ZOU R M, LIU F, et al. A review of wind speed and wind power forecasting with deep neural networks[J]. Applied Energy, 2021, 304: 117766.
[5] CHEN G G, LI L J, ZHANG Z Z, et al. Short-term wind speed forecasting with principle-subordinate predictor based on Conv-LSTM and improved BPNN[J]. IEEE Access, 2020, 8: 67955-67973.
[6] LIU D, WANG J L, WANG H. Short-term wind speed forecasting based on spectral clustering and optimised echo state networks[J]. Renewable Energy, 2015, 78: 599-608.
[7] ZHAO X Y, JIANG N, LIU J F, et al. Short-term average wind speed and turbulent standard deviation forecasts based on one-dimensional convolutional neural network and the integrate method for probabilistic framework[J]. Energy Conversion and Management, 2020, 203:112239.
[8] HUANG G B, WANG D H, LAN Y. Extreme learning machines: a survey[J]. International Journal of Machine Learning and Cybernetics, 2011, 2(2): 107-122.
[9] 朱抗, 杨洪明, 孟科. 基于极限学习机的短期风力发电预测[J]. 电力科学与技术学报, 2019, 34(2): 106-111.
ZHU K, YANG H M, MENG K. Short-term wind power forecast using extreme learning machine[J]. Journal of Electric Power Science and Technology, 2019, 34(2): 106-111.
[10] 杨锡运, 关文渊, 刘玉奇, 等. 基于粒子群优化的核极限学习机模型的风电功率区间预测方法[J]. 中国电机工程学报, 2015, 35(增刊1): 146-153.
YANG X Y, GUAN W Y, LIU Y Q, et al. Prediction intervals forecasts of wind power based on PSO-KELM[J]. Proceedings of the CSEE, 2015, 35(S1): 146-153.
[11] MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.
[12] FARIS H, ALJARAH I, AL-BETAR M A, et al. Grey wolf optimizer: a review of recent variants and applications[J]. Neural Computing and Applications, 2018, 30(2): 413-435.
[13] HUANG N E,SHEN Z,LONG S R,et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[EB/OL].(1998-03-08)[2023-02-16].https:∥ .
[14] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
[15] TORRES M E, COLOMINAS M A, SCHLOTTHAUER G, et al. A complete ensemble empirical mode decomposition with adaptive noise[C]∥2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE, 2011: 4144-4147.
[16] 韩宏志, 唐振浩. 基于CEEMDAN与回声状态网络的风速预测方法[J]. 电力系统保护与控制, 2020, 48(12): 90-96.
HAN H Z, TANG Z H. Wind speed prediction method based on CEEMDAN and echo state network[J]. Power System Protection and Control, 2020, 48(12): 90-96.
[17] REN Y, SUGANTHAN P N, SRIKANTH N. A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods[J]. IEEE Transactions on Sustainable Energy, 2015, 6(1): 236-244.
[18] 舒畅, 金潇, 李自品, 等. 基于CEEMDAN的配电变压器放电故障噪声诊断方法[J]. 高电压技术, 2018, 44(8): 2603-2611.
SHU C, JIN X, LI Z P, et al. Noise diagnosis method of distribution transformer discharge fault based on CEEMDAN[J]. High Voltage Engineering, 2018, 44(8): 2603-2611.
[19] WANG H F, XIU C B, LI Y Q, et al. Hysteretic neural network and its application in the prediction of the wind speed series[C]∥The 26th Chinese Control and Decision Conference (2014 CCDC).Piscataway: IEEE, 2014: 762-765.
[20] SUN S Z, FU J Q, LI A. A compound wind power forecasting strategy based on clustering, two-stage decomposition, parameter optimization, and optimal combination of multiple machine learning approaches[J]. Energies, 2019, 12(18): 3586.
[21] WANG J J, ZHANG W Y, LI Y N, et al. Forecasting wind speed using empirical mode decomposition and Elman neural network[J]. Applied Soft Computing, 2014, 23: 452-459.
[22] 董雪, 赵宏伟, 赵生校, 等. 基于二次分解和多目标优化的超短期海上风电功率预测[J]. 高电压技术, 2022, 48(8): 3260-3270.
DONG X, ZHAO H W, ZHAO S X, et al. Ultra-short-term offshore wind power forecasting based on secondary decomposition and multi-objective optimization[J]. High Voltage Engineering, 2022, 48(8): 3260-3270.
[23] HE F F, ZHOU J Z, FENG Z K, et al. A hybrid short-term load forecasting model based on variational mode decomposition and long short-term memory networks considering relevant factors with Bayesian optimization algorithm[J]. Applied Energy, 2019, 237: 103-116.
[24] BAI S J, KOLTER J Z, KOLTUN V. Trellis networks for sequence modeling[EB/OL]. (2018-10-15)[2023-02-16]. https:∥
Similar References:


Last Update: 2024-03-08
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)