STATISTICS

Viewed2000

Downloads660

Research Progress of Covalent Organic Framework Membranes for Liquid-based Separations
[1]ZHU Junyong,CHEN Tiantian,HAN Shuangqiao,et al.Research Progress of Covalent Organic Framework Membranes for Liquid-based Separations[J].Journal of Zhengzhou University (Engineering Science),2023,44(01):13-23.[doi:10.13705/j.issn.1671-6833.2023.01.019]
Copy
References:
[1] CHU S, MAJUMDAR A. Opportunities and challenges for a sustainable energy future [ J] . Nature, 2012, 488 (7411) : 294-303.
[2] SHANNON M A, BOHN P W, ELIMELECH M, et al. Science and technology for water purification in the coming decades [ J ] . Nature, 2008, 452 ( 7185 ) : 301-310. 
[3] SHOLL D S, LIVELY R P. Seven chemical separations to change the world [ J ] . Nature, 2016, 532 ( 7600 ) : 435-437. 
[4] ABDIKHEIBARI S, LEI W W, DUMÉE L F, et al. Thin film nanocomposite nanofiltration membranes from amine functionalized-boron nitride / polypiperazine amide with enhanced flux and fouling resistance[ J] . Journal of materials chemistry A, 2018, 6(25) : 12066-12081.
[5] PARK H B, KAMCEV J, ROBESON L M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity [ J ] . Science, 2017, 356 (6343) : eaab0530.
[6] WERBER J R, OSUJI C O, ELIMELECH M. Materials for next-generation desalination and water purification membranes[J]. Nature reviews materials, 2016, 1: 16018. 
[7] KIM J Y, OH H, MOON H R. Hydrogen isotope separation in confined nanospaces: carbons, zeolites, metalorganic frameworks, and covalent organic frameworks [ J] . Advanced materials, 2019, 31(20) : 1805293. 
[8] VAN de VOORDE B, BUEKEN B, DENAYER J, et al. Adsorptive separation on metal-organic frameworks in the liquid phase [ J ] . Chemical society reviews, 2014, 43 (16) : 5766-5788. 
[9] ZHU J Y, YUAN S S, WANG J, et al. Microporous organic polymer-based membranes for ultrafast molecular separations [ J ] . Progress in polymer science, 2020, 110: 101308. 
[10] ZHANG C, WU B H, MA M Q, et al. Ultrathin metal / covalent-organic framework membranes towards ultimate separation [ J ] . Chemical society reviews, 2019, 48 (14) : 3811-3841.
[11] 帕提曼·尼扎木丁, 玛日耶姆·图尔贡, 阿布力孜·伊 米提. MOFs 薄膜的可控制备及在光波导气体传感器 中的应 用 [ J] . 郑 州 大 学 学 报 ( 工 学 版) , 2019, 40 (6) : 53-56. 
PATIMA N, MARYAMGUL T, ABLIZ Y. Controllable fabrication of MOFs film and application in optical waveguide gas sensor[ J] . Journal of Zhengzhou university ( engineering science) , 2019, 40(6) : 53-56.
[12] FENG X, DING X S, JIANG D L. Covalent organic frameworks [ J ] . Chemical society reviews, 2012, 41 (18) : 6010-6022. 
[13] ZHANG G, TSUJIMOTO M, PACKWOOD D, et al. Construction of a hierarchical architecture of covalent organic frameworks via a postsynthetic approach[ J] . Journal of the American chemical society, 2018, 140 ( 7) : 2602-2609.
[14] QIAN C, QI Q Y, JIANG G F, et al. Toward covalent organic frameworks bearing three different kinds of pores: the strategy for construction and COF-to-COF transformation via heterogeneous linker exchange[ J]. Journal of the American chemical society, 2017, 139(19): 6736-6743. [15] CÔTÉ A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks [ J ] . Science, 2005, 310(5751) : 1166-1170.
[16] DEY K, PAL M, ROUT K C, et al. Selective molecular separation by interfacially crystallized covalent organic framework thin films[ J] . Journal of the American chemical society, 2017, 139(37) : 13083-13091. 
[17] SHINDE D B, CAO L, WONANKE A D D, et al. Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving[J]. Chemical science, 2020, 11(21): 5434-5440. [18] LIU C Y, JIANG Y Z, NALAPARAJU A, et al. Postsynthesis of a covalent organic framework nanofiltration membrane for highly efficient water treatment[ J] . Journal of materials chemistry A, 2019, 7(42) : 24205-24210. 
[19] YANG H, YANG L X, WANG H J, et al. Covalent organic framework membranes through a mixed-dimensional assembly for molecular separations[ J] . Nature communications, 2019, 10: 2101. 
[20] LI Y, WU Q X, GUO X H, et al. Laminated self-standing covalent organic framework membrane with uniformly distributed subnanopores for ionic and molecular sieving[ J] . Nature communications, 2020, 11: 599.
[21] EL-KADERI H M, HUNT J R, MENDOZA-CORTÉS J L, et al. Designed synthesis of 3D covalent organic frameworks[ J] . Science, 2007, 316(5822) : 268-272.
[22] GUAN X Y, CHEN F Q, FANG Q R, et al. Design and applications of three dimensional covalent organic frameworks[ J ] . Chemical society reviews, 2020, 49 ( 5 ) : 1357-1384.
[23] SHI X S, ZHANG Z P, YIN C C, et al. Design of threedimensional covalent organic framework membranes for fast and robust organic solvent nanofiltration[ J]. Angewandte chemie international edition, 2022, 61(36): e202207559. 
[24] EVANS A M, RYDER M R, JI W, et al. Trends in the thermal stability of two-dimensional covalent organic frameworks[J]. Faraday discussions, 2021, 225: 226-240. 
[25] CUSIN L, PENG H J, CIESIELSKI A, et al. Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks[ J] . Angewandte Chemie international edition, 2021, 60 ( 26) : 14236-14250. 
[26] REN X R, BAI B, ZHANG Q S, et al. Constructing stable chromenoquinoline-based covalent organic frameworks via intramolecular povarov reaction[ J] . Journal of the American chemical society, 2022, 144(6) : 2488-2494. [27] YANG Y L, YU L, CHU T C, et al. Constructing chemical stable 4-carboxyl-quinoline linked covalent organic frameworks via Doebner reaction for nanofiltration [ J ] . Nature communications, 2022, 13: 2615.
[28] LU Z W, YANG C Y, HE L, et al. Asymmetric hydrophosphonylation of imines to construct highly stable covalent organic frameworks with efficient intrinsic proton conductivity[ J] . Journal of the American chemical society, 2022, 144(22) : 9624-9633. 
[29] YANG S Z, YANG C Q, DUN C C, et al. Covalent organic frameworks with irreversible linkages via reductive cyclization of imines[ J] . Journal of the American chemical society, 2022, 144(22) : 9827-9835. 
[30] KANDAMBETH S, MALLICK A, LUKOSE B, et al. Construction of crystalline 2D covalent organic frameworks with remarkable chemical ( acid / base ) stability via a combined reversible and irreversible route[ J] . Journal of the American chemical society, 2012, 134(48) : 19524- 19527. 
[31] ZHOU L H, LI X F, CAO K C, et al. Covalent organic framework membrane with Turing structures for deacidification of highly acidic solutions[ J] . Advanced functional materials, 2022, 32(9) : 2108178.
[32] FRITZ P W, COSKUN A. Postfunctionalized covalent organic frameworks for water harvesting [ J] . ACS central science, 2022, 8(7) : 871-873. 
[33] ZHANG Y Q, GUO J, HAN G, et al. Molecularly soldered covalent organic frameworks for ultrafast precision sieving[ J] . Science advances, 2021, 7(13) : 1-9. 
[34] KUEHL V A, YIN J S, DUONG P H H, et al. A highly ordered nanoporous, two-dimensional covalent organic framework with modifiable pores, and its application in water purification and ion sieving[ J]. Journal of the American chemical society, 2018, 140(51): 18200-18207. 
[35] ZHAO S, JIANG C H, FAN J C, et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation[J]. Nature materials, 2021, 20(11): 1551-1558. 
[36] MOHAMMED A K, AL KHOORI A A, ADDICOAT M A, et al. Solvent-influenced fragmentations in free-standing three-dimensional covalent organic framework membranes for hydrophobicity switching[ J] . Angewandte chemie, 2022, 134(13) : e202200905.
[37] YUAN S S, LI X, ZHU J Y, et al. Covalent organic frameworks for membrane separation[ J] . Chemical society reviews, 2019, 48(10) : 2665-2681. 
[38] XIAN W P, ZUO X H, ZHU C J, et al. Anomalous thermo-osmotic conversion performance of ionic covalent-organic-framework membranes in response to charge variations[ J] . Nature communications, 2022, 13: 3386. 
[39] YOU X, CAO L, LIU Y, et al. Charged nanochannels in covalent organic framework membranes enabling efficient ion exclusion[ J] . ACS nano, 2022, 16: 11781-11791. 
[40] HOU L X, XIAN W P, BING S S, et al. Understanding the ion transport behavior across nanofluidic membranes in response to the charge variations[ J] . Advanced functional materials, 2021, 31(16) : 2009970. 
[41] CAO L, CHEN I C, CHEN C L, et al. Giant osmotic energy conversion through vertical-aligned ion-permselective nanochannels in covalent organic framework membranes [ J] . Journal of the American chemical society, 2022, 144(27) : 12400-12409.
[42] YU X Q, LI C Y, CHANG J H, et al. Gating effects for ion transport in three-dimensional functionalized covalent organic frameworks[ J] . Angewandte chemie international edition, 2022, 61(13) : e202200820. 
[43] DUONG P H H, KUEHL V A, MASTOROVICH B, et al. Carboxyl-functionalized covalent organic framework as a two-dimensional nanofiller for mixed-matrix ultrafiltration membranes [ J ] . Journal of membrane science, 2019, 574: 338-348.
[44] HAN S Q, MAI Z H, WANG Z, et al. Covalent organic framework-mediated thin-film composite polyamide membranes toward precise ion sieving[ J] . ACS applied materials & interfaces, 2022, 14(2) : 3427-343[45] KANDAMBETH S, BISWAL B P, CHAUDHARI H D, et al. Selective molecular sieving in self-standing porous covalent-organic-framework membranes [ J ] . Advanced materials, 2017, 29(2) : 1603945.
[46] YAO L, RODRÍGUEZ-CAMARGO A, XIA M, et al. Covalent organic framework nanoplates enable solutionprocessed crystalline nanofilms for photoelectrochemical hydrogen evolution[ J] . Journal of the American chemical society, 2022, 144(23) : 10291-10300. 
[47] PAN F S, GUO W X, SU Y L, et al. Direct growth of covalent organic framework nanofiltration membranes on modified porous substrates for dyes separation[ J] . Separation and purification technology, 2019, 215: 582-589.
[48] GUO Z Y, JIANG H F, WU H, et al. Oil-water-oil triphase synthesis of ionic covalent organic framework nanosheets[ J] . Angewandte chemie international edition, 2021, 60(52) : 27078-27085.
[49] YAO J, LIU C, LIU X Q, et al. Azobenzene-assisted exfoliation of 2D covalent organic frameworks into largearea, few-layer nanosheets for high flux and selective molecular separation membrane[ J] . Journal of membrane science, 2020, 601: 117864.
[50] JIN Y H, HU Y M, ORTIZ M, et al. Confined growth of ordered organic frameworks at an interface[ J] . Chemical society reviews, 2020, 49(14) : 4637-4666. 
[51] ZHANG S L, ZHAO S, JING X C, et al. Covalent organic framework-based membranes for liquid separation[ J]. Organic chemistry frontiers, 2021, 8(14): 3943-3967. 
[52] WANG X Y, SHI B B, YANG H, et al. Assembling covalent organic framework membranes with superior ion exchange capacity [ J ] . Nature communications, 2022, 13: 1020. 
[53] YANG R J, LIU S S, SUN Q, et al. Potential differencemodulated synthesis of self-standing covalent organic framework membranes at liquid / liquid interfaces [ J ] . Journal of the American chemical society, 2022, 144 (26) : 11778-11787. 
[54] MATSUMOTO M, VALENTINO L, STIEHL G M, et al. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films[J]. Chem, 2018, 4(2): 308-317. 
[55] SHINDE D B, SHENG G, LI X, et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration[ J] . Journal of the American chemical society, 2018, 140(43) : 14342-14349.
[56] SHEVATE R, SHAFFER D L. Large-area 2D covalent organic framework membranes with tunable single-digit nanopores for predictable mass transport[ J] . ACS nano, 2022, 16(2) : 2407-2418.
[57] LIU M H, LIU Y X, DONG J C, et al. Two-dimensional covalent organic framework films prepared on various substrates through vapor induced conversion [ J ] . Nature communications, 2022, 13: 1411. 
[58] WANG M D, ZHANG P H, LIANG X, et al. Ultrafast seawater desalination with covalent organic framework membranes [ J ] . Nature sustainability, 2022, 5 ( 6 ) : 518-526.
[59] KHAN N A, ZHANG R N, WANG X Y, et al. Assembling covalent organic framework membranes via phase switching for ultrafast molecular transport [ J ] . Nature communications, 2022, 13: 3169. 
[60] XIN W W, QIAN Y C, NIU B, et al. Tunable molecular transport and sieving enabled by covalent organic framework with programmable surface charge[ J] . Materials today, 2021, 51: 56-64.
[61] SHENG F M, LI X Y, LI Y Y, et al. Cationic covalent organic framework membranes for efficient dye / salt separation [J]. Journal of membrane science, 2022, 644: 120118.
[62] 张浩勤,秦国胜,张秋楠,等. 染料脱盐纳滤膜分离性 能表征[ J] . 郑州大学学报( 工学版) , 2015, 36( 3) : 73-76. 
ZHANG H Q, QIN G S, ZHANG Q N, et al. Separation performance characterization of the NF membrane with dye desalination [ J ] . Journal of Zhengzhou university ( engineering science) , 2015, 36(3) :73-76.
[63] ZHENG Y, SHEN J L, YUAN J Q, et al. 2D nanosheets seeding layer modulated covalent organic framework membranes for efficient desalination[ J] . Desalination, 2022, 532: 115753. 
[64] 金业豪, 冯孝权, 朱军勇, 等. 有机溶剂纳滤传递模 型及最新膜材料研究进展 [ J] . 化工进展, 2021, 40 (11) : 6181-6194. 
JIN Y H, FENG X Q, ZHU J Y, et al. Research progress in transfer models and membrane materials for organic solvent nanofiltration [ J ] . Chemical industry and engineering progress, 2021, 40(11) : 6181-6194. 
[65] YUAN J Q, YOU X D, KHAN N A, et al. Photo-tailored heterocrystalline covalent organic framework membranes for organics separation [ J ] . Nature communications, 2022, 13: 3826.
[66] YANG J L, TU B, ZHANG G J, et al. Advancing osmotic power generation by covalent organic framework monolayer [ J ] . Nature nanotechnology, 2022, 17 ( 6 ) : 622-628. 
[67] ZUO X H, ZHU C J, XIAN W P, et al. Thermo-osmotic energy conversion enabled by covalent-organic-framework membranes with record output power density[J]. Angewandte chemie international edition, 2022, 61(18): e202116910.
Similar References:
Memo

-

Last Update: 2022-12-06
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)