Fire Detection Model Based on Multi-scale Feature Fusion
[1]Zhang Jianxin,Guo Si Jing,Zhang Guolan,et al.Fire Detection Model Based on Multi-scale Feature Fusion[J].Journal of Zhengzhou University (Engineering Science),2021,42(05):13-18.[doi:10.13705/j.issn.1671-6833.2021.05.016]
[1] 杨文柱,刘晴,王思乐,等.基于深度卷积神经网络的羽绒图像识别[J].郑州大学学报(工学版),2018,39(2):11-17.
[2] 黄文锋,徐珊珊,孙燚,等.基于多分辨率卷积神经网络的火焰检测[J].郑州大学学报(工学版),2019,40(5):80-84.
[3] FRIZZI S,KAABI R,BOUCHOUICHA M,et al.Convolutional neural network for video fire and smoke detection[C]//IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society.Piscataway:IEEE,2016:877-882.
[4] SHARMA J,GRANMO O C,GOODWIN M,et al.Deep convolutional neural networks for fire detection in images[J].Engineering applications of neural networks,2017,744:183-193.
[5] SIMONYAN K,ZISSERMAN A.Very deep convolutional networks for large-scale image recognition[C]//International Conference on Learning Representations. San Diego,USA:ICLR,2015:1-14.
[6] HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE,2016:770-778.
[7] 林作永,谌瑶.基于深度卷积神经网络的火灾预警算法研究[J].信息通信,2018(5):38-42.
[8] SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE,2016:2818-2826.
[9] HOWARD A G,ZHU M L,CHEN B,et al.MobileNets:efficient convolutional neural networks for mobile vision applications[EB/OL].(2017-04-17)[2020-12-01].
[10] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE transactions on pattern analysis and machine intelligence,2017,39(6):1137-1149.
[11] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot MultiBox detector[M]//Computer Vision-ECCV 2016.Cham:Springer International Publishing,2016:21-37.
[12] DAI J F,LI Y,HE K M,et al.R-FCN:object detection via region-based fully convolutional networks[C]//NIPS′16:Proceedings of the 30th International Conference on Neural Information Processing Systems.Barcelona,Spain:NIPS,2016:379-387.
[13] IOFFE S,SZEGEDY C.Batch normalization:accelerating deep network training by reducing internal covariate shift[C]//32nd International Conference on Machine Learning 2015.Lille,France:ICML,2015:448-456.
[14] 夏雪,袁非牛,章琳,等.从传统到深度:视觉烟雾识别、检测与分割[J].中国图象图形学报,2019,24(10):1627-1647.
[15] LIN T Y,DOLLwidth=11,height=14,dpi=110R P,GIRSHICK R,et al.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE,2017:936-944.
[16] SZEGEDY C,LIU W,JIA Y Q,et al.Going deeper with convolutions[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway:IEEE,2015:1-9.
[17] SZEGEDY C,IOFFE S,VANHOUCKE V,et al. Inception-v4,Inception-ResNet and the impact of residual connections on learning[EB/OL].(2016-08-23)[2020-12-01].
[18] HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2018:7132-7141.
[19] REDMON J,FARHADI A.YOLOv3:an incremental improvement[EB/OL].(2018-04-08)[2020-12-01].
Similar References:


Last Update: 2021-10-11
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)