YUAN J, CHENG H L, SUN L J, et al. Causes of arch expansion on semi-rigid base asphalt pavement based on temperature-stress analysis[J]. China Journal of Highway and Transport, 2024, 37(12): 182-196.
[2]SUI X, LENG Z, WANG S Q, et al. In-situ grouting rate prediction of semi-flexible pavement based on a novel composite dielectric constant model and ground-penetrating radar[J]. Construction and Building Materials, 2024, 438: 137209.
[3]方宏远, 董智峰, 薛冰寒, 等. 高聚物注浆修复的面板堤坝探地雷达波场特征分析[J]. 郑州大学学报(工学版), 2024, 45(3): 1-6, 13.
FANG H Y, DONG Z F, XUE B H, et al. Analysis of ground penetrating radar wave field characteristics of dam face disengaging repaired by polymer grouting[J]. Journal of Zhengzhou University (Engineering Science), 2024, 45(3): 1-6, 13.
[4]GIRSHICK R. Fast R-CNN[EB/OL]. (2015-04-30) [2024-11-19]. https:∥doi. org/10. 48550/arXiv. 1504.08083.
[5]REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]∥ 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 779-788.
[6]宋娟, 贺龙喜, 龙会平. 基于深度学习的隧道衬砌多病害检测算法[J]. 浙江大学学报(工学版), 2024, 58(6): 1161-1173.
SONG J, HE L X, LONG H P. Deep learning-based algorithm for multi defect detection in tunnel lining[J]. Journal of Zhejiang University (Engineering Science), 2024, 58(6): 1161-1173.
[7]叶发茂, 张立, 袁燎, 等. DB-YOLO: 特征增强融合的双骨干YOLOv8道路缺陷检测模型[J]. 计算机工程与应用, 2024, 60(24): 260-269.
YE F M, ZHANG L, YUAN L, et al. DB-YOLO: dual backbone YOLOv8 model with feature enhancement fusion for road defect detection[J]. Computer Engineering and Applications, 2024, 60(24): 260-269.
[8]申铉京, 李涵宇, 黄永平, 等. 基于自适应多尺度特征融合网络的车辆检测方法[J/OL]. 电子学报, 2023: 1-9(2023-03-31)[2024-11-19].:https:∥ kns.cnki.net/kcms/detail/11.2087. tn.20230330.1000. 056.html.
SHEN X J, LI H Y, HUANG Y P, et al. Vehicle detection method based on adaptive multi-scale feature fusion network[J/OL]. China Industrial Economics, 2023: 19(2023-03-31)[2024-11-19].:https:∥kns. cnki. net/kcms/detail/11. 2087. tn. 20230330. 1000. 056. html.
[9]赵平, 周永霞. 基于注意力机制的DA-YOLO缺陷检测算法[J]. 中国计量大学学报, 2024, 35(2): 326332, 348.
ZHAO P, ZHOU Y X. A DA-YOLO defect detection algorithm based on the attention mechanism[J]. Journal of China University of Metrology, 2024, 35(2): 326332, 348.
[10] SOHAN M, SAI RAM T, RAMI REDDY C V. A review on YOLOv8 and its advancements[C]∥Data Intelligence and Cognitive Informatics. New York: Springer, 2024: 529-545.
[11] DING X H, ZHANG X Y, HAN J G, et al. Diverse branch block: building a convolution as an inception-like unit[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10881-10890.
[12] YANG S M, CAO Z, LIU N B, et al. Maritime electrooptical image object matching based on improved YOLOv9 [J]. Electronics,2024, 13(14):2774.
[13] LI X W, NI X B, CAO Z Y, et al. Detection method for power workers′ protection rope compliance based on improved YOLOv8[C]∥Advanced Intelligent Computing Technology and Applications. New York: Springer, 2024: 335-344.
[14]郭士礼, 岳光华, 蔡文才, 等. 多相离散随机介质探地雷达波传输特性研究[J]. 地球物理学进展, 2021, 36(1): 351-360.
GUO S L, YUE G H, CAI W C, et al. Study on transmission characteristics of GPR in multiphase discrete random medium[J]. Progress in Geophysics, 2021, 36 (1): 351-360.
[15] ZHANG Y, GUO Z Y, WU J Q, et al. Real-time vehicle detection based on improved YOLO v5[J]. Sustainability, 2022, 14(19): 12274.
[16]WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for realtime object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2023: 7464-7475.