STATISTICS

Viewed33

Downloads53

A Vehicle Re-identification Post-processing Algorithm Against Pedestrian Interference
[1]CAO Yangjie,CAI Jihao,WANG Peiqi,et al.A Vehicle Re-identification Post-processing Algorithm Against Pedestrian Interference[J].Journal of Zhengzhou University (Engineering Science),2026,47(XX):1-7.[doi:10.13705/j.issn.1671-6833.2025.05.012]
Copy
References:
[1] HAN K, GONG S G, HUANG Y, et al. Clothing-change feature augmentation for person re-identification[C]//Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. Piscataway: IEEE, 2023: 22066-22075.
[2] GAO Y L, LU L P, XU B R, et al. Multi-dimensional attention network for vehicle re-identification[C]//2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI). Piscataway: IEEE, 2022: 1-5.
[3] KHORRAMSHAHI P, SHENOY V, CHELLAPPA R. Robust and scalable vehicle re-identification via self-supervision[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway: IEEE, 2023: 5295-5304.
[4] WANG Y, PENG J J, WANG H B, et al. Progressive learning with multi-scale attention network for cross-domain vehicle re-identification[J]. Science China Information Sciences, 2022, 65(6): 160103.
[5] LUO H, JIANG W, GU Y Z, et al. A strong baseline and batch normalization neck for deep person re-identification[J]. IEEE Transactions on Multimedia, 2020, 22(10): 2597-2609.
[6] YE M, SHEN J B, LIN G J, et al. Deep learning for person re-identification: a survey and outlook[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(6): 2872-2893.
[7] NABILA E S, Wahyono. Person re-identification using background subtraction and Siamese network for pose variants[C]//2022 8th International Conference on Science and Technology (ICST). Piscataway: IEEE, 2022: 1-6.
[8] ZHOU Z L, LI Y J, LI J, et al. GAN-Siamese network for cross-domain vehicle re-identification in intelligent transport systems[J]. IEEE Transactions on Network Science and Engineering, 2023, 10(5): 2779-2790.
[9] LEE S, WOO T, LEE S H. Multi-attention-based soft partition network for vehicle re-identification[J]. Journal of Computational Design and Engineering, 2023, 10(2): 488-502.
[10] NGUYEN N B, NGUYEN V H, NGO T D, et al. Person re-identification with mutual re-ranking[J]. Vietnam Journal of Computer Science, 2017, 4(4): 233-244.
[11] MANSOURIAN A M, SOMERS V, DE VLEESCHOUWER C, et al. Multi-task learning for joint re-identification, team affiliation, and role classification for sports visual tracking[C]//Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports. New York: ACM, 2023: 103-112.
[12] CHEN Y H, WANG C Y, YANG C Y, et al. NeighborTrack: improving single object tracking by bipartite matching with neighbor tracklets[EB/OL]. (2022-11-12)[2025-02-18]. https://doi.org/10.48550/arXiv.2211.06663.
[13] LIU X C, LIU W, MA H D, et al. Large-scale vehicle re-identification in urban surveillance videos[C]//2016 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2016: 1-6.
[14] LIU H Y, TIAN Y H, WANG Y W, et al. Deep relative distance learning: tell the difference between similar vehicles[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2016: 2167-2175.
[15] HE Z Q, LEI Y, BAI S, et al. Multi-Camera Vehicle Tracking with Powerful Visual Features and Spatial-Temporal Cue[C]//CVPR Workshops. Piscataway: IEEE, 2019: 203-212.
[16] BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]//Proceedings of the Fifth Annual Workshop on Computational Learning Theory. Pittsburgh Pennsylvania USA. New York: ACM, 1992: 144-152.
[17] XIE S N, GIRSHICK R, DOLLÁR P, et al. Aggregated residual transformations for deep neural networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 5987-5995.
[18] ZHONG Z, ZHENG L, CAO D L, et al. Re-ranking person re-identification with k-reciprocal encoding[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2017: 3652-3661.
[19] LIN W P, LI Y D, YANG X L, et al. Multi-view learning for vehicle re-identification[C]//2019 IEEE International Conference on Multimedia and Expo (ICME). Piscataway: IEEE, 2019: 832-837.
[20] JIN Y, LI C N, LI Y D, et al. Model latent views with multi-center metric learning for vehicle re-identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1919-1931.
[21] QIAN J C, PAN M T, TONG W, et al. URRNet: a unified relational reasoning network for vehicle re-identification[J]. IEEE Transactions on Vehicular Technology, 2023, 72(9): 11156-11168.
[22] XU Z M, WEI L L, LANG C Y, et al. SSR-net: a structural translation network for vehicle re-identification[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(6): 1-22.
[23] PANG X Y, TIAN X, NIE X S, et al. Vehicle re-identification based on grouping aggregation attention and cross-part interaction[J]. Journal of Visual Communication and Image Representation, 2023, 97: 103937.
Similar References:
Memo

-

Last Update: 2026-01-14
Copyright © 1980 Editorial Board of Journal of Zhengzhou University (Engineering Science)
Email: gxb@zzu.edu.cn ;Tel: 0371-67781276,0371-67781277
Address: No.100 Science Avenue,100,Zhengzhou 450001,China