STATISTICS

Viewed31

Downloads26

Construction Vehicles Recognition Algorithm Based on Improved YOLOv7 in High Risk Areas
[1]ZHANG Zhen,XIAO Zongrong,LI Youhao,et al.Construction Vehicles Recognition Algorithm Based on Improved YOLOv7 in High Risk Areas[J].Journal of Zhengzhou University (Engineering Science),2025,46(05):1-8.[doi:10.13705/j.issn.1671-6833.2025.02.019]
Copy
References:
[1]胡皓,郭放,刘钊.改进YOLOX-S模型的施工场景目标检测[J]. 计算机科学与探索, 2023, 17(5): 1089-1101. 
HU H, GUO F, LIU Z. Object detection based on improved YOLOX-S model in construction sites[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1089-1101. 
[2]张震,李浩方,李孟洲,等.改进YOLOv3算法与人体信息数据融合的视频监控检测方法[J].郑州大学学报(工学版), 2021, 42(1):28-34. 
ZHANG Z, LI H F, LI M Z, et al. Video surveillance detection method based on improved YOLOv3 algorithm and human body information data fusion[J]. Journal of Zhengzhou University(Engineering Science),2021,42 (1):28-34. 
[3]李柯泉,陈燕,刘佳晨,等. 基于深度学习的目标检测算法综述[J]. 计算机工程,2022,48(7): 1-12. 
LI K Q, CHEN Y, LI J C, et al. Survey of deep learning-based object detection algorithms[J]. Computer Engineering, 2022, 48(7): 1-12. 
[4]GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]∥2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587. 
[5]REN S Q, HE K M, GIRSHICK R, et al. Faster RCNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. 
[6]LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shotmultibox detector[C]∥Proceedings of the European Conference on Computer Vision. Berlin:Springer,2016: 21-37. 
[7]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Maching Intelligence, 2020,42 (2): 318-327. 
[8]REDMON J,DIVVALA S,GIRSHICK R,et al. You only look once: unified,realtime object detection[C] ∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2016:779-788. 
[9]张震,王晓杰,晋志化,等.基于轻量化YOLOv5的交通标志检测[J].郑州大学学报(工学版),2024,45(2): 12-19. 
ZHANG Z, WANG X J, JIN Z H, et al. Traffic sign detection based on lightweight YOLOv5[J]. Journal of Zhengzhou University(Engineering Science), 2024,45 (2) :12-19. 
[10]WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-theart for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023:7464-7475. 
[11]李松江,吴宁,王鹏,等.基于改进 Cascade RCNN 的车辆目标检测方法[J].计算机工程与应用,2021,57 (5):123-130. 
LI S J, WU N, WANG P, et al. Vehicle target detection method based on improved Cascade RCNN[J]. Computer Engineering and Applications, 2021,57(5):123-130. 
[12]周康,朱宗晓,徐征宇,等.改进 Faster R-CNN的道路目标检测[J].计算机与数字工程,2022,50(4): 750-756. 
ZHOU K, ZHU Z X, XU Z Y, et al. Road target detection based on improved Faster R-CNN[J]. Computer Engineering, 2022, 50(4):750-756. 
[13]李国进,胡洁,艾矫燕.基于改进 SSD 算法的车辆检测[J].计算机工程,2022,48(1):266-274. 
LI G J, HU J, AI J Y. Vehicle detection based on improved SSD algorithm[J]. Computer Engineering,2022, 48(1): 266-274. 
[14]胡习之, 魏征, 周文超. 融合 Camshift 与 YOLOv4 车辆检测算法[J]. 机床与液压,2021,49(11):70-74. 
HU X Z, WEI Z, ZHOU W C. Fusion of Camshift and YOLOv4 vehicle detection algorithm[J].Machine Tool & Hydraulics,2021,49(11):70-74.
[15] ZHANG Z X. Drone-YOLO: an efficient neural network method for target detection in drone images[J]. Drones, 2023, 7(8): 526. 
[16] HE K, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916.     
[17]WANG C Y, LIAO H Y M, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piacataway: IEEE,2020:1571-1580. 
[18]唐靓, 余明慧, 武明虎,等. 基于改进 YOLOv5的绝缘子缺陷检测算法[J].华中师范大学学报(自然科学版), 2022, 56(5): 771-780. 
TANG J, YU M H, WU M H, et al. Insulator defect detection algorithm based on improved YOLOv5[J]. Journal of Central China Normal University (Natural Sciences), 2022, 56(5): 771-780. 
[19] LIU Y C, SHAO Z R, NICO H. Global attention mechanism: retain information to enhance channel-spatial interactions[EB/OL].(2021-12-10)[2024-08-16].https:∥ doi.org/10.48550/arXiv.2112.05561. 
[20]WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[EB/OL]. (2018-07-17)[202408-16].https:∥doi.org/10.48550/arXiv.1807.06521. 
[21] LIU W Z, LU H, FU H T, et al. Learning to upsample by learning to sample[EB/OL]. (2023-08-29)[202408-16].https:∥doi.org/10.48550/arXiv.2308.15085. 
[22] LI Y J, MA C Y, LI L P, et al. Lightweight tunnel obstacle detection based on improved YOLOv5[J]. Sensors, 2024, 24(2):395. 
[23]张徐,朱正为,郭玉英,等. 基于cosSTR-YOLOv7的多尺度遥感小目标检测[J].电光与控制,2024,31(4): 28-34. 
ZHANG X, ZHU Z W, GUO Y Y, et al. Multi-scale remote sensing small target detection based on cosSTRYOLOv7[J]. Electronics Optics & Control, 2024, 31 (4):28-34. 
[24] FAHAD J, JANIBUL A S, ABU N M,et al. Detection of mold on the food surface using YOLOv5[J]. Current Research in Food Science,2021,4: 724-728.
[25] SHE F F, HONG Z Y, ZENG Z Q,et al. Improved traffic sign detection model based on YOLOv7-tiny[J]. IEEE Access,2023, 11: 126555-126567. 
[26]WANG F, WANG H Y, QIN Z Y ,et al. UAV target detection algorithm based on improved YOLOv8[J]. IEEE Access,2023,11: 116534-116544.
Similar References:
Memo

-

Last Update: 2025-09-19
Copyright © 2023 Editorial Board of Journal of Zhengzhou University (Engineering Science)